
Name ____________________________________________                      MTH 2001 - Calculus 3 
 

PRACTICE ADVANCED STANDING EXAM 
No outside resources are permitted including: notes, textbooks, cell phones or any other electronics. Show all 
work. Solutions without explanations will receive no points. Simplify your answers. Circle your final answers. 

 
1.  Calculate the given quantities using the following vectors: 

𝐮⃗⃗ = 𝐢̂ + 𝐣̂ − 2𝐤̂     and      𝐯⃗ = 3𝐢̂ − 2𝐣̂ + 𝐤̂ 
 
a.  2𝐮⃗⃗ + 3𝐯⃗  

2(𝐢̂ + 𝐣̂ − 2𝐤̂) + 3(3𝐢̂ − 2𝐣̂ + 𝐤̂) = 2𝐢̂ + 2𝐣̂ − 4𝐤̂ + 9𝐢̂ − 6𝐣̂ + 3𝐤̂ = 11𝐢̂ − 4𝐣̂ − 1𝐤̂    

 
b.  |𝐮⃗⃗ | and |𝐯⃗ | 

|𝐮⃗⃗ | = √(1)2 + (1)2 + (−2)2 = √1 + 1 + 4 = √6 

|𝐯⃗ | = √(3)2 + (−2)2 + (1)2 = √9 + 4 + 1 = √14 
 
c. A unit vector going in the same direction as 𝐮⃗⃗  
𝐮⃗⃗ 

|𝐮⃗⃗ |
=

1

√6
(𝐢̂ + 𝐣̂ − 2𝐤̂) =

1

√6
 𝐢̂ +

1

√6
𝐣̂ −

2

√6
𝐤̂ 

 
d.  𝐮⃗⃗ ∙ 𝐯⃗  

(𝐢̂ + 𝐣̂ − 2𝐤̂) ∙ (3𝐢̂ − 2𝐣̂ + 𝐤̂) = (1)(3) + (1)(−2) + (−2)(1) = 3 − 2 − 2 = −1 

 
e.  𝐮⃗⃗ × 𝐯⃗  

(𝐢̂ + 𝐣̂ − 2𝐤̂) × (3𝐢 − 2𝐣̂ + 𝐤̂) = |
𝐢̂ 𝐣̂ 𝐤̂
𝟏 𝟏 −𝟐
𝟑 −𝟐 𝟏

| = +𝐢̂ |
𝟏 −𝟐

−𝟐 𝟏
| − 𝐣̂ |

𝟏 −𝟐
𝟑 𝟏

| + 𝐤̂ |
𝟏 𝟏
𝟑 −𝟐

| 

= +𝐢̂(1 − 4) − 𝐣̂(1 + 6) + 𝐤̂(−2 − 3) = −3𝐢̂ − 7𝐣̂ − 5𝐤̂ 
 

f. Find the angle between the vectors 𝐮⃗⃗  and 𝐯⃗  
𝐮⃗⃗ ∙ 𝐯⃗ = |𝐮⃗⃗ ||𝐯⃗ | cos 𝜃  

[−1] = [√6][√14] cos 𝜃  

So cos 𝜃 = −
1

√6∙√14
 , which means that 𝜃 = cos−1 (−

1

√6∙√14
) = cos−1 (−

1

2√21
) 

 
g.  comp 𝐮⃗⃗ 𝐯⃗  
𝐮⃗⃗ ∙𝐯⃗ 

|𝐮⃗⃗ |
=

−1

√6
 

 
h.  proj 𝐮⃗⃗ 𝐯⃗  

(
𝐮⃗⃗ ∙𝐯⃗ 

|𝐮⃗⃗ |
)

𝐮⃗⃗ 

|𝐮⃗⃗ |
=

−1

√6
(

1

√6
 𝐢̂ +

1

√6
𝐣̂ −

2

√6
𝐤̂) = −

1

6
 𝐢̂ −

1

6
𝐣̂ +

1

3
𝐤̂ 

 

2.  If 𝐫 (𝑡) = 〈𝑡3,
1

𝜋
sin(𝜋𝑡) , 4 + 2 ln 𝑡〉, find the equation of the tangent line to the curve at the point  

     when 𝑡 = 1 

At 𝑡 = 1, If 𝐫 (𝑡) = 〈13,
1

𝜋
sin(𝜋) , 4 + 2 ln 1〉 = 〈1,0,4〉 

Now 𝐫′⃗⃗ (𝑡) = 〈3𝑡2, cos(𝜋𝑡) ,
2

𝑡
〉, which means that 𝐫′⃗⃗ (1) = 〈3(1)2, cos(𝜋) ,

2

1
〉 = 〈3,−1,2〉 

Therefore, the equations of the tangent line are: 
𝑥(𝑡) = 1 + 3𝑡 and 𝑦(𝑡) = 0 − 1𝑡  and 𝑧(𝑡) = 4 + 2𝑡 
Or, alternately, the tangent line can be written as: 〈1 + 3𝑡, −𝑡, 4 + 2𝑡〉 



3.   Find the arclength of the curve 𝐫 (𝑡) = 〈3 cos 𝑡 , 3 sin 𝑡 , 𝑡〉 between the endpoints where 𝑡 = 𝜋  
      and 𝑡 = 4𝜋 
 
Since 𝐫 (𝑡) = 〈3 cos 𝑡 , 3 sin 𝑡 , 𝑡〉, then 𝐫 ′(𝑡) = 〈−3 sin 𝑡 , 3 cos 𝑡 , 1〉 

Then the arclength is given by: ∫ √(−3 sin 𝑡)2 + (3 cos 𝑡)2+(1)2𝑑𝑡
4𝜋

𝜋
= ∫ √9 sin2 𝑡 + 9 cos2 𝑡 + 1𝑑𝑡

4𝜋

𝜋
 

∫ √9(sin2 𝑡 + cos2 𝑡) + 1𝑑𝑡
4𝜋

𝜋
= ∫ √9 + 1𝑑𝑡

4𝜋

𝜋
= ∫ √10𝑑𝑡 = 𝑡√10|

𝑡=𝜋

𝑡=4𝜋
= 4𝜋√10 − 𝜋√10 = 3𝜋√10

4𝜋

𝜋
  

 
 
 
 

 

4. [14 pts] Evaluate the following limit, or explain why it does not exist:  lim
(𝑥,𝑦)→(0,0)

10𝑥 sin2 𝑦

𝑥2+sin4 𝑦
  

 

Along the path of the vertical line 𝑦 = 0, the problem becomes: lim
(𝑥,0)→(0,0)

10𝑥(0)2

𝑥2+(0)4
= lim

𝑥→0

0

𝑥2
= 0 

Along the path of the curve 𝑥 = sin2 𝑦, the problem becomes:  

lim
(sin2 𝑦,𝑦)→(0,0)

10(sin2 𝑦) sin2 𝑦

(sin2 𝑦)2+sin4 𝑦
= lim

𝑦→0

10 sin4 𝑦

sin4 𝑦+sin4 𝑦
= lim

𝑦→0

10sin4 𝑦

2sin4 𝑦
=

10

2
= 5  

If a limit exists, it must be the same along every path.  Since we have two paths that do not produce the 
same result, then the limit does not exist. 

 
 
5. Use information about the gradient to answer the following about the surface  

                                     𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦3 − 5𝑥𝑦   
 

(a) What is the directional derivative at the point (1,2) in the direction of the vector 𝐯⃗ = 〈3,4〉 
 

Since ∇𝑓 = 〈
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
〉 = 〈2𝑥 − 5𝑦, 3𝑦2 − 5𝑥〉, then at the point (1,2), we have ∇𝑓(1,2) = 〈−8,7〉 

Now 𝐯⃗ = 〈3,4〉 is not a unit vector since |𝐯⃗ | = √32 + 42 = √25 = 5.  Thus, we need to make a unit 

vector in the same direction: 𝐰⃗⃗ =
𝐯⃗ 

|𝐯⃗ |
= 〈

3

5
,
4

5
〉.   

Then the directional derivative is given by ∇𝑓 ∙ 𝐰⃗⃗ : 〈−8,7〉 ∙ 〈
3

5
,
4

5
〉 =

−24

5
+

28

5
=

4

5
 

 
(b) What is the maximum value of the directional derivative? 

 
The maximum value of the directional derivative is given by: 

 |∇𝑓| = |〈−8,7〉| = √(−8)2 + (7)2 = √64 + 49 = √113  
 

(c) In what direction (given as a unit vector) is this largest directional derivative?  
 
The largest directional derivative occurs in the direction of ∇𝑓 itself.   

So we need to turn ∇𝑓 into a unit vector, which produces: 
∇𝑓

|∇𝑓|
= 〈−

8

√113
,

7

√113
〉 

 
 
 
 
 
 



6. Given the function 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦𝑧3 + 2𝑥𝑦2, where 𝑥 = 𝑟𝑠 sin 𝑡 and 𝑦 = 𝑠2𝑒𝑡 and  

𝑧 = 3𝑡 + 2 , find the value of the partial derivatives 
𝜕𝑓

𝜕𝑟
, 
𝜕𝑓

𝜕𝑠
, and 

𝜕𝑓

𝜕𝑡
 at the point where 𝑟 = 1, 𝑠 = 2, and 

𝑡 = 0. 
 
 

                                        
𝜕𝑓

𝜕𝑟
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑟
 

                                        
𝜕𝑓

𝜕𝑠
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑠
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑠
 

                                        
𝜕𝑓

𝜕𝑡
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑡
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑡
+

𝜕𝑓

𝜕𝑧

𝜕𝑧

𝜕𝑡
 

If  𝑟 = 1, 𝑠 = 2, and 𝑡 = 0, then 𝑥 = (1)(2) sin(0) = 0 and 𝑦 = (2)2𝑒(0) = 4 and 𝑧 = 3(0) + 2 = 2 
 

Now 
𝜕𝑓

𝜕𝑥
= 2𝑥 + 2𝑦2 ⇒

𝜕𝑓

𝜕𝑥
= 2(0) + 2(4)2 = 32 

and 
𝜕𝑓

𝜕𝑦
= 𝑧3 + 4𝑥𝑦 ⇒

𝜕𝑓

𝜕𝑦
= (2)3 + 4(0)(4) = 8 

and 
𝜕𝑓

𝜕𝑧
= 3𝑦𝑧2 ⇒

𝜕𝑓

𝜕𝑧
= 3(4)(2)2 = 48 

 
Furthermore: 
𝜕𝑥

𝜕𝑟
= 𝑠 sin 𝑡 ⇒

𝜕𝑥

𝜕𝑟
= (2) sin(0) = 0  

𝜕𝑥

𝜕𝑠
= 𝑟 sin 𝑡 ⇒

𝜕𝑥

𝜕𝑠
= (1) sin(0) = 0                

𝜕𝑦

𝜕𝑠
= 2𝑠𝑒𝑡 ⇒

𝜕𝑦

𝜕𝑠
= 2(2)𝑒(0) = 4 

𝜕𝑥

𝜕𝑡
= 𝑟𝑠 cos 𝑡 ⇒

𝜕𝑥

𝜕𝑡
= (1)(2) cos(0) = 2       

𝜕𝑦

𝜕𝑡
= 𝑠2𝑒𝑡 ⇒

𝜕𝑦

𝜕𝑠
= (2)2𝑒(0) = 4        

𝜕𝑧

𝜕𝑡
= 3 ⇒

𝜕𝑧

𝜕𝑡
= 3 

 

Thus:   
𝜕𝑓

𝜕𝑟
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑟
= [32][0] = 0 

             
𝜕𝑓

𝜕𝑠
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑠
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑠
= [32][0] + [8][4] = 32 

             
𝜕𝑓

𝜕𝑡
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑡
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑡
+

𝜕𝑓

𝜕𝑧

𝜕𝑧

𝜕𝑡
= [32][2] + [8][4] + [48][3] = 64 + 32 + 144 = 240 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7. Find and classify all the Critical Points of the function 𝑓(𝑥, 𝑦) = 3𝑥𝑦 − 𝑥2𝑦 − 𝑥𝑦2 as Relative Maxima, 
Relative Minima, or Saddle Points. 

 
       First, we identify any Critical Points.  That is, we find where 𝑓𝑥 = 0 and 𝑓𝑦 = 0 

       𝑓𝑥 = 3𝑦 − 2𝑥𝑦 − 𝑦2 ⇒ 3𝑦 − 2𝑥𝑦 − 𝑦2 = 0 
       𝑓𝑦 = 3𝑥 − 𝑥2 − 2𝑥𝑦 ⇒ 3𝑥 − 𝑥2 − 2𝑥𝑦 = 0 

 
If 3𝑦 − 2𝑥𝑦 − 𝑦2 = 0, then this equation factors: 𝑦(3 − 2𝑥 − 𝑦) = 0,  
meaning that either 𝑦 = 0 or 3 − 2𝑥 − 𝑦 = 0 ⇒ 𝑦 = 3 − 2𝑥 
 
If 𝑦 = 0, then we have 3𝑥 − 𝑥2 − 2𝑥(0) = 0 ⇒ 3𝑥 − 𝑥2 = 0 from our second equation. 
This factors into 𝑥(3 − 𝑥) = 0, producing two solution: 𝑥 = 0 or 𝑥 = 3 
Therefore we get (0,0) and (3,0) as Critical Points that we need to check. 
 
Alternately, if 𝑦 = 3 − 2𝑥, then the second equation becomes: 3𝑥 − 𝑥2 − 2𝑥(3 − 2𝑥) = 0 
3𝑥 − 𝑥2 − 6𝑥 + 4𝑥2 = 0  
3𝑥2 − 3𝑥 = 0  
This factors into 3𝑥(𝑥 − 1) = 0, which produces two solutions: 𝑥 = 0 or 𝑥 = 1 
If 𝑥 = 0, then 𝑦 = 3 − 2(0) = 3 
If 𝑥 = 1, then 𝑦 = 3 − 2(1) = 1 
Thus we have two additional Critical Points to check as well: (0,3) and (1,1) 
 

We need to check all of these in the equation 𝐷 = (𝑓𝑥𝑥)(𝑓𝑦𝑦) − (𝑓𝑥𝑦)
2
 

Since 𝑓𝑥𝑥 = −2𝑦 and  𝑓𝑦𝑦 = −2𝑥  and  𝑓𝑥𝑦 = 3 − 2𝑥 − 2𝑦 

 
At (0,0), we have 𝑓𝑥𝑥 = 0 and 𝑓𝑦𝑦 = 0 and 𝑓𝑥𝑦 = 3, making 𝐷 = (0)(0) − (3)2 = −9 

Since 𝐷 is negative, this tells us that (0,0) is a Saddle Point. 
 
 
At (3,0), we have 𝑓𝑥𝑥 = 0 and 𝑓𝑦𝑦 = −6 and 𝑓𝑥𝑦 = −3, making 𝐷 = (0)(−6) − (−3)2 = −9 

Since 𝐷 is negative, this tells us that (3,0) is a Saddle Point. 
 
 
At (0,3), we have 𝑓𝑥𝑥 = −6 and 𝑓𝑦𝑦 = 0 and 𝑓𝑥𝑦 = −3, making 𝐷 = (−6)(0) − (−3)2 = −9 

Since 𝐷 is negative, this tells us that (0,3) is a Saddle Point. 
 
 
At (1,1), we have 𝑓𝑥𝑥 = −2 and 𝑓𝑦𝑦 = −2 and 𝑓𝑥𝑦 = −1, making 𝐷 = (−2)(−2) − (−1)2 = +3 

Since 𝐷 is positive and 𝑓𝑥𝑥 is negative, this tells us that (1,1) is a Relative Maximum. 
 
 
 

 
 
 
 
 
 
 



 
8. Find the Absolute Max and Absolute Min of the function 𝑓(𝑥, 𝑦) = 𝑥2 − 2𝑥𝑦 + 2𝑦 on the triangular 

region in the xy-plane bounded by the points (0,0) and (2,0) and (2,4) 
 
First, we identify any Critical Points that lie in the interior of the region.  That is, we solve 𝑓𝑥 = 0 and 𝑓𝑦 = 0 

𝑓𝑥 = 0 ⇒ 2𝑥 − 2𝑦 = 0 ⇒ 𝑥 = 𝑦  
𝑓𝑦 = 0 ⇒ −2𝑥 + 2 = 0 ⇒ 𝑥 = 1  

Since 𝑥 = 1 and 𝑥 = 𝑦, then 𝑦 = 1.  Thus the only Critical Point we have in the interior is (1,1). 
In addition, we know we will have to check the three endpoints where the edges connect, so this gives us 
three more points to add to our growing list: (0,0) and (2,0) and (2,4) 
 
Now we need to check and see if there are any other points that we need to worry about that actually lie on 
the edges themselves.  We begin with the bottom edge.  It’s a horizontal line, so its equation is 𝑦 = 0.  
Plugging this in to our original formula, that equation degenerates into: 𝑓(𝑥, 0) = 𝑥2 − 2𝑥(0) + 2(0) = 𝑥2 
We look for Critical Points of this equation, places where 𝑓′ = 0 ⇒ 2𝑥 = 0 ⇒ 𝑥 = 0 
This only yields 𝑥 = 0, which together with the restriction that 𝑦 = 0 for this edge gives us the point (0,0).  
That point was already in our list of places to check, so we don’t get any new points to worry about from this 
edge. 
 
The right side of the triangle is a vertical line, given by the equation 𝑥 = 2.  Again, we plug that into the 
original formula, which forces it to degenerate into: 𝑓(2, 𝑦) = (2)2 − 2(2)𝑦 + 2𝑦 = 4 − 2𝑦 
We look for Critical Points of this reduced formula but quickly realize there aren’t any because the derivative 
here is always 𝑓′ = −2, which means it can’t ever be zero.  So we don’t pick up any new points from this 
edge either. 
 
Finally, we come to the slanted edge of the triangle, which is given by the formula 𝑦 = 2𝑥.  Plugging this into 
the original, the equation again degenerates into: 𝑓(𝑥, 2𝑥) = 𝑥2 − 2𝑥(2𝑥) + 2(2𝑥) = −3𝑥2 + 4𝑥 
Once again, we look for Critical Points of this new equation: 𝑓′ = −6𝑥 + 4   

Now 𝑓′ = 0 ⇒ −6𝑥 + 4 = 0 ⇒ 𝑥 =
2

3
  Finally, we have something new!  When 𝑥 =

2

3
, then 𝑦 = 2 (

2

3
) =

4

3
, so 

we need to add the point (
2

3
,
4

3
) to our list. 

 
So we have a total of five points to check by plugging them into our original function and evaluating: 
𝑓(1,1) = (1)2 − 2(1)(1) + 2(1) = 1 − 2 + 2 = 1  
𝑓(0,0) = (0)2 − 2(0)(0) + 2(0) = 0 − 0 + 0 = 0  
𝑓(2,0) = (2)2 − 2(2)(0) + 2(0) = 4 − 0 + 0 = 4  
𝑓(2,4) = (2)2 − 2(2)(4) + 2(4) = 4 − 16 + 8 = −4  

𝑓 (
2

3
,
4

3
) = (

2

3
)
2

− 2(
2

3
) (

4

3
) + 2 (

4

3
) =

4

9
−

16

9
+

8

3
=

4

9
−

16

9
+

24

9
=

12

9
=

4

3
≈ 1.333…  

Of all of these output values, −4 is the lowest, so it is the Abs Min. 
4 is the highest, so it is the Abs Max. 
 
 
 
 
 
 
 
 
 



 
9. Find the Absolute Max and Absolute Min of the function 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑥𝑦 + 𝑦2  

on the disk 𝑥2 + 𝑦2 ≤ 8. 
 
First, we identify any Critical Points that lie in the interior of the region.  That is, we solve 𝑓𝑥 = 0 and 𝑓𝑦 = 0 

𝑓𝑥 = 0 ⇒ 2𝑥 + 𝑦 = 0 and 𝑓𝑦 = 0 ⇒ 𝑥 + 2𝑦 = 0 

Solving the first equation, we get: 𝑦 = −2𝑥 
Plugging this in to the second equation, we get: 𝑥 + 2(−2𝑥) = 0 ⇒ −3𝑥 = 0 ⟹ 𝑥 = 0 
Since 𝑥 = 0, then 𝑦 = −2(0) = 0 and so we have only one critical point in the interior, namely (0,0) 
Next, we use Lagrange multipliers on the boundary. 
𝑓 = 𝑥2 + 𝑥𝑦 + 𝑦2 ⟹ ∇𝑓 = 〈2𝑥 + 𝑦, 𝑥 + 2𝑦〉  
𝑔 = 𝑥2 + 𝑦2 − 8 ⟹ ∇𝑔 = 〈2𝑥, 2𝑦〉  
Now if ∇𝑓 = 𝜆∇𝑔, then 〈2𝑥 + 𝑦, 𝑥 + 2𝑦〉 = 𝜆〈2𝑥, 2𝑦〉 =〈2𝑥𝜆, 2𝑦𝜆〉  
Thus 2𝑥 + 𝑦 = 2𝑥𝜆 ⟹ 𝑦 = 2𝑥𝜆 − 2𝑥 ⟹ 𝑦 = 2𝑥(𝜆 − 1) from our first coordinate. 
Likewise, from our second, we get 𝑥 + 2𝑦 = 2𝑦𝜆 ⟹ 𝑥 = 2𝑦𝜆 − 2𝑦 ⟹ 𝑥 = 2𝑦(𝜆 − 1) 

Substituting the first into the second, we get: 𝑥 = 2(2𝑥(𝜆 − 1))(𝜆 − 1) = 4𝑥(𝜆 − 1)2 

Moving terms around: 4𝑥(𝜆 − 1)2 − 𝑥 = 0 ⟹ 𝑥(4(𝜆 − 1)2 − 1) = 0 
Now, either 𝑥 = 0, or 4(𝜆 − 1)2 − 1 = 0 

If 𝑥 = 0, then 𝑥2 + 𝑦2 = 8 ⟹ 0 + 𝑦2 = 8 ⟹ 𝑦 = ±√8, which gives us two new potential Critical Points to 

check, namely (0, √8) and (0,−√8) 

Alternately, if 4(𝜆 − 1)2 − 1 = 0 ⟹ (𝜆 − 1)2 =
1

4
⟹ 𝜆 − 1 = ±

1

2
⟹ 𝜆 =

3

2
 or 𝜆 =

1

2
 

If 𝜆 =
3

2
, then 𝑦 = 2𝑥(𝜆 − 1) ⟹ 𝑦 = 𝑥 and therefore 𝑥2 + 𝑦2 = 8 ⟹ 2𝑥2 = 8 ⟹ 𝑥 = ±2 

This gives two more potential critical points: (2,2) and (−2,−2)  

Finally, if 𝜆 =
1

2
, then 𝑦 = 2𝑥(𝜆 − 1) ⟹ 𝑦 = −𝑥 and therefore 𝑥2 + 𝑦2 = 8 ⟹ 2𝑥2 = 8 ⟹ 𝑥 = ±2 

This gives the final two potential critical points: (2, −2) and (−2,2)   
                                                                                                               
We have seven points to check.  The results are as follows:  
𝑓(0,0) = (0)2 + (0)(0) + (0)2 = 0 + 0 + 0 = 0  

𝑓(0, √8) = (0)2 + (0)(√8) + (√8)
2
= 0 + 0 + 8 = 8  

𝑓(0,−√8) = (0)2 + (0)(−√8) + (−√8)
2
= 0 + 0 + 8 = 8  

𝑓(2,2) = (2)2 + (2)(2) + (2)2 = 4 + 4 + 4 = 12  
𝑓(−2,2) = (−2)2 + (−2)(2) + (2)2 = 4 − 4 + 4 = 4  
𝑓(2,−2) = (2)2 + (2)(−2) + (−2)2 = 4 − 4 + 4 = 4  
𝑓(−2,−2) = (−2)2 + (−2)(−2) + (−2)2 = 4 + 4 + 4 = 12   
The Absolute Max is 12.  The Absolute Min is 0.  
 
 
 
 
 
 
 
 
 
 
 

 



10.   Evaluate the following integral by reversing the order of integration: ∫ ∫
𝑦𝑒𝑥2

𝑥3
𝑑𝑥𝑑𝑦

1

√𝑦

1

0
 

Since the integral is: ∫ ∫
𝑦𝑒𝑥2

𝑥3 𝑑𝑥𝑑𝑦
𝑥=1

𝑥=√𝑦

𝑦=1

𝑦=0
, then the limits are clearly 𝑦 = 0, 𝑦 = 1,  𝑥 = 1, and 𝑥 = √𝑦 

The region of integration looks like this: 
 
                                     Since the final integration is toward the y-axis between 𝑦 = 0 and 𝑦 = 1, then the  
            other two equations are the right and left boundaries of the region, at ,  𝑥 = 1, and 

                                      𝑥 = √𝑦 respectively. 

 
 
           In order to rewrite the integral, we need to re-orient the region, so that we are 
                        projecting instead toward the x-axis at the end of the problem, which gives us limits  
                                   of 𝑥 = 0 and 𝑥 = 1 for our outermost integral.  Now, our innermost integral has  
                                   limits which form the top and bottom of our region instead.  The bottom edge is the  
                                   x-axis itself, so this limit is clearly 𝑦 = 0.  The upper limit is the parabolic region 

which can be written as 𝑥 = √𝑦 or 𝑦 = 𝑥2.  Since we need these limits to be in the form “y = something” 

we use the second of the two options.   
 

Now our new integral is: ∫ ∫
𝑦𝑒𝑥2

𝑥3 𝑑𝑦𝑑𝑥
𝑦=𝑥2

𝑦=0

𝑥=1

𝑥=0
 

Since there is only one “y” term in the formula, we focus on that for the first integration: 
 

∫ ∫
𝑦𝑒𝑥2

𝑥3 𝑑𝑦𝑑𝑥
𝑦=𝑥2

𝑦=0

𝑥=1

𝑥=0
= ∫ ∫ 𝑦

𝑒𝑥2

𝑥3 𝑑𝑦𝑑𝑥
𝑦=𝑥2

𝑦=0

𝑥=1

𝑥=0
= ∫ (

1

2
𝑦2 𝑒𝑥2

𝑥3 )|
𝑦=0

𝑦=𝑥2

𝑑𝑥
𝑥=1

𝑥=0
= ∫ (

1

2
𝑥4 𝑒𝑥2

𝑥3 − 0)𝑑𝑥
𝑥=1

𝑥=0
  

∫ (
1

2
𝑥𝑒𝑥2

)𝑑𝑥 = (
1

4
𝑒𝑥2

)|
𝑥=0

𝑥=1

= (
1

4
𝑒1) − (

1

4
𝑒0)

𝑥=1

𝑥=0
=

𝑒

4
−

1

4
=

𝑒−1

4
  

 
 

11. Find the mass of a thin metal plate that occupies a region D that is bounded by the parabola  
𝑥 = 1 − 𝑦2 and the coordinate axes in the first quadrant if the density of the plate varies according to the 
density function 𝜌(𝑥, 𝑦) = 𝑦 

 
The region outlined by the boundaries of 
The plate look like this: 
 
Note that we could set this up either as a double 
integral that ends along the x-axis, or as a double 
integral that ends along the y-axis.  If we try the first option, we will have to rewrite that parabola 

in its alternate form: 𝑥 = 1 − 𝑦2 ⟹ 𝑦 = √1 − 𝑥 
This will make our integration slightly messier, so we are probably better off doing the problem as an 
integration toward the y-axis, which will make our region look like this: 
 
Therefore, the equation for the mass will simply be: 

𝑚 = ∬[Density]𝑑𝑥𝑑𝑦 = ∫ ∫ 𝑦𝑑𝑥𝑑𝑦
𝑥=1−𝑦2

𝑥=0

𝑦=1

𝑦=0
  

∫ (𝑥𝑦)|𝑥=0
𝑥=1−𝑦2

𝑑𝑦
𝑦=1

𝑦=0
= ∫ 𝑦(1 − 𝑦2) − 0𝑑𝑦

𝑦=1

𝑦=0
= ∫ 𝑦 − 𝑦3𝑑𝑦

𝑦=1

𝑦=0
  

(
1

2
𝑦2 −

1

4
𝑦4)|

𝑦=0

𝑦=1

= (
1

2
−

1

4
) − (0 − 0) =

1

4
  

Thus the total mass of the plate is: 𝑚 =
1

4
 



 
12. Find the volume that lies inside the cylinder 𝑥2 + 𝑦2 = 4 and above the xy-plane and beneath the 

parabaloid 𝑧 = 𝑥2 + 𝑦2 + 1 by using cylindrical coordinates. 
 
Graphing the region, we can see that it looks like this:  
Since the shadow region in the xy-plane is a circle, 
This gives us very convenient bounds  
for our 𝑟 and 𝜃 terms: 0 ≤ 𝑟 ≤ 2 and 0 ≤ 𝜃 ≤ 2𝜋  
The z-coordinate bounds are the equations that form the upper and lower 
Edges of this region.  The upper surface is the parabaloid, whose equation  
is 𝑧 = 𝑥2 + 𝑦2 + 1.  The lower boundary is the xy-plane, whose 
equation is simply 𝑧 = 0. 
 
 
 

Thus we can convert the fairly involved rectangular integral: ∫ ∫ ∫ 1𝑑𝑧𝑑𝑦𝑑𝑥
𝑧=𝑥2+𝑦2+1

𝑧=0

𝑦=√4−𝑥2

𝑦=−√4−𝑥2

𝑥=2

𝑥=−2
 

Into a much more convenient cylindrical form by using the following transformation equations: 
𝑥 = 𝑟 cos 𝜃  
𝑦 = 𝑟 sin 𝜃   
𝑟2 = 𝑥2 + 𝑦2  
𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑟𝑑𝑟𝑑𝜃𝑑𝑧  
 

This makes our integral into: ∫ ∫ ∫ 1𝑟𝑑𝑧𝑑𝜃𝑑𝑟 
𝑧=𝑟2+1

𝑧=0

𝜃=2𝜋

𝜃=0

𝑟=2

𝑟=0
 

∫ ∫  (𝑟𝑧)|𝑧=0
𝑧=1+𝑟2

𝑑𝜃𝑑𝑟
𝜃=2𝜋

𝜃=0

𝑟=2

𝑟=0
= ∫ ∫ (𝑟(1 + 𝑟2) − 0)𝑑𝜃𝑑𝑟

𝜃=2𝜋

𝜃=0

𝑟=2

𝑟=0
= ∫ ∫ (𝑟 + 𝑟3)𝑑𝜃𝑑𝑟

𝜃=2𝜋

𝜃=0

𝑟=2

𝑟=0
  

= ∫  ((𝑟 + 𝑟3)𝜃)|
𝜃=0

𝜃=2𝜋
𝑑𝑟

𝑟=2

𝑟=0
= ∫ 2𝜋(𝑟 + 𝑟3)𝑑𝑟

𝑟=2

𝑟=0
  

 (2𝜋 (
1

2
𝑟2 +

1

4
𝑟4))|

𝑟=0

𝑟=2

= (2𝜋(2 + 4)) − (0) = 12𝜋  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



13. Show that the volume of the upper half of a sphere of radius R is 
2

3
𝜋𝑅3 by using spherical coordinates. 

 
Graphing the upper half of a sphere, we can see that 
It looks like this:  
Thus, we can tell that we have very convenient bounds 

For all of our limits: 0 ≤ 𝜌 ≤ 𝑅 and 0 ≤ 𝜃 ≤ 2𝜋 and 0 ≤ 𝜙 ≤
𝜋

2
 

 
 
 
If we had tried to find the volume in rectangular coordinates, 

The equations would have been very complicated: ∫ ∫ ∫ 1𝑑𝑧𝑑𝑦𝑑𝑥
𝑧=√𝑅2−𝑥2−𝑦2

𝑧=−√𝑅2−𝑥2−𝑦2

𝑦=√𝑅2−𝑥2

𝑦=−√𝑅2−𝑥2

𝑥=𝑅

𝑥=−𝑅
 

However, to convert to spherical, we simply use the following transformation equations: 
𝑥 = 𝜌 sin𝜙 cos 𝜃  
𝑦 = 𝜌 sin𝜙 sin 𝜃  
𝑧 = 𝜌 cos𝜙  
𝜌2 = 𝑥2 + 𝑦2 + 𝑧2  
𝑑𝑥𝑑𝑦𝑑𝑧 = 𝜌2 sin𝜙 𝑑𝜌𝑑𝜃𝑑𝜙  
 

This makes our integral into: ∫ ∫ ∫ 1𝜌2 sin𝜙 𝑑𝜌𝑑𝜃𝑑𝜙 
𝜌=𝑅

𝜌=0

𝜃=2𝜋

𝜃=0

𝜙=
𝜋

2
𝜙=0

 

∫ ∫  (
1

3
𝜌3 sin𝜙)|

𝜌=0

𝜌=𝑅

𝑑𝜃𝑑𝜙
𝜃=2𝜋

𝜃=0

𝜙=
𝜋

2
𝜙=0

= ∫ ∫ (
1

3
𝑅3 sin𝜙)𝑑𝜃𝑑𝜙

𝜃=2𝜋

𝜃=0

𝜙=
𝜋

2
𝜙=0

= ∫  (
1

3
𝑅3 𝜃sin 𝜙)|

𝜃=0

𝜃=2𝜋

𝑑𝜙
𝜙=

𝜋

2
𝜙=0

  

∫ (
2𝜋

3
𝑅3 sin 𝜙) 𝑑𝜙

𝜙=
𝜋

2
𝜙=0

=  (−
2𝜋

3
𝑅3 cos𝜙)|

𝜙=0

𝜙=
𝜋

2
= (−

2𝜋

3
𝑅3(0)) − (−

2𝜋

3
𝑅3(1)) = 0 +

2𝜋

3
𝑅3 =

2

3
𝜋𝑅3  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



14. Evaluate the following integral:∫ ∫ 8𝑥𝑑𝑦𝑑𝑥
4𝑥2+1

4𝑥2  
1

0
    

by making the transformations: 𝑠 = 2𝑥 and 𝑡 = 𝑦 − 4𝑥2  
(Note: You must show the appropriate work for a change-of-variable problem.  You will not receive any 
credit if you attempt to leave the integral in its original xy-form.) 

 
 Now the region of integration looks like this:   

Since the integral looks like this: ∫ ∫ 8𝑥𝑑𝑦𝑑𝑥
𝑦=4𝑥2+1

𝑦=4𝑥2  
𝑥=1

𝑥=0
 

It has four boundaries: 𝑥 = 1 [right] 
and 𝑥 = 0 [left] and 𝑦 = 4𝑥2 [bottom] and 𝑦 = 4𝑥2 + 1 [top] 
We are given the equations 𝑠 = 2𝑥 and 𝑡 = 𝑦 − 4𝑥2, but we have to convert the 

problem into s and t, so we need to solve them the other way: 𝑥 =
1

2
𝑠 

and  𝑡 = 𝑦 − 4𝑥2 ⟹ 𝑡 = 𝑦 − 𝑠2 ⟹ 𝑦 = 𝑡 + 𝑠2 
Now, by using these equations, we can see how the limits transform: 
[top] 𝑦 = 4𝑥2 + 1 ⟹ 𝑡 + 𝑠2 = 𝑠2 + 1 ⟹ 𝑡 = +1 
[bottom] 𝑦 = 4𝑥2 ⟹ 𝑡 + 𝑠2 = 𝑠2 ⟹ 𝑡 = 0 

[left] 𝑥 = 0 ⟹
1

2
𝑠 = 0 ⟹ 𝑠 = 0 

[right] 𝑥 = 1 ⟹
1

2
𝑠 = 1 ⟹ 𝑠 = 2 

This gives us a very simple rectangular region for the new integral:  
 
Now, we need to determine the “extra” factor from the Jacobian: 

Since 𝑥 =
1

2
𝑠 ⟹

𝜕𝑥

𝜕𝑠
=

1

2
 and 

𝜕𝑥

𝜕𝑡
= 0    

Since 𝑦 = 𝑡 + 𝑠2 ⟹
𝜕𝑦

𝜕𝑠
= 2𝑠 and 

𝜕𝑦

𝜕𝑡
= 1     

Then 𝐽 = [
1

2
0

2𝑠 1
]  so det(𝐽) = (

1

2
) (1) − (0)(2𝑠) =

1

2
     

Since 𝑑𝑥𝑑𝑦 = |det(𝐽)|𝑑𝑠𝑑𝑡 = |
1

2
| 𝑑𝑠𝑑𝑡 =

1

2
𝑑𝑠𝑑𝑡 

Finally, we have that ∫ ∫ 8𝑥𝑑𝑦𝑑𝑥
𝑦=4𝑥2+1

𝑦=4𝑥2  
𝑥=1

𝑥=0
= ∫ ∫ 8 (

1

2
𝑠) ∙

1

2
𝑑𝑠𝑑𝑡

𝑠=2

𝑠=0
 

𝑡=1

𝑡=0
 

∫ ∫ 2𝑠𝑑𝑠𝑑𝑡
𝑠=2

𝑠=0
 

𝑡=1

𝑡=0
= ∫  (𝑠2)|𝑠=0

𝑠=2𝑑𝑡 
𝑡=1

𝑡=0
= ∫ 4 − 0𝑑𝑡 

𝑡=1

𝑡=0
= ∫ 4𝑑𝑡 

𝑡=1

𝑡=0
  

   (4𝑡)|𝑡=0
𝑡=1 = 4 − 0 = 4  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



15. Evaluate the following integral:∬ (𝑥 − 2𝑦)𝑑𝐴
 

𝑅
 over the triangular region R that has vertices at the points 

(0,0) and (1,2) and (2,1)  by making the transformations: 𝑥 = 2𝑢 + 𝑣 and 𝑦 = 𝑢 + 2𝑣 
(Note: You must show the appropriate work for a change-of-variable problem.  You will not receive any 
credit if you attempt to leave the integral in its original xy-form.) 

  
 
 Now the region of integration looks like this:   

It has three boundaries: 𝑦 = 2𝑥 and 𝑦 =
1

2
𝑥 and 𝑦 = −𝑥 + 3 

This is inconvenient to write in xy-form because no matter which axis we 
Choose for our final integration, the region would have to be subdivided into 
Two pieces.  We are already given the transformation equations 𝑥 = 2𝑢 + 𝑣  
and 𝑦 = 𝑢 + 2𝑣, so we convert these edges one at a time: 

Edge 1:  𝑦 = 2𝑥 ⟹ [𝑢 + 2𝑣] = 2[2𝑢 + 𝑣] ⟹ 𝑢 + 2𝑣 = 4𝑢 + 2𝑣 ⟹ 2𝑣 − 2𝑣 = 4𝑢 − 𝑢 
              ⟹ 3𝑢 = 0 ⟹ 𝑢 = 0  

Edge 2:  𝑦 =
1

2
𝑥 ⟹ [𝑢 + 2𝑣] =

1

2
[2𝑢 + 𝑣] ⟹ 𝑢 + 2𝑣 = 𝑢 +

1

2
𝑣 ⟹ 2𝑣 −

1

2
𝑣 = 𝑢 − 𝑢 

              ⟹
3

2
𝑣 = 0 ⟹ 𝑣 = 0  

Edge 3:  𝑦 = −𝑥 + 3 ⟹ [𝑢 + 2𝑣] = −[2𝑢 + 𝑣] + 3 ⟹ 𝑢 + 2𝑣 = −2𝑢 − 𝑣 + 3 
              ⟹ 2𝑣 + 𝑣 = −2𝑢 − 𝑢 + 3 ⟹ 3𝑣 = −3𝑢 + 3 ⟹ 𝑣 = −𝑢 + 1  
This gives us a convenient region in our new uv-system: 
 

 
Now, we need to determine the “extra” factor from the Jacobian: 

Since 𝑥 = 2𝑢 + 𝑣 ⟹
𝜕𝑥

𝜕𝑢
= 2 and 

𝜕𝑥

𝜕𝑣
= 1     

Since 𝑦 = 𝑢 + 2𝑣 ⟹
𝜕𝑦

𝜕𝑢
= 1 and 

𝜕𝑦

𝜕𝑣
= 2     

Then 𝐽 = [
2 1
1 2

]  so det(𝐽) = (2)(2) − (1)(1) = 4 − 1 = 3      

Since 𝑑𝑥𝑑𝑦 = |det(𝐽)|𝑑𝑢𝑑𝑣 = |3|𝑑𝑢𝑑𝑣 = 3𝑑𝑢𝑑𝑣 
Additionally, we need to rewrite the function we are integrating, so 
𝑥 − 2𝑦 ⟹ [2𝑢 + 𝑣] − 2[𝑢 + 2𝑣] = 2𝑢 + 𝑣 − 2𝑢 − 4𝑣 ⟹ −3𝑣  

Finally, we have that ∬ (𝑥 − 2𝑦)𝑑𝐴
 

𝑅
= ∫ ∫ (−3𝑣) ∙ 3𝑑𝑣𝑑𝑢

𝑣=1−𝑢

𝑣=0
 

𝑢=1

𝑢=0
    

                                                                                  

∫ ∫ −9𝑣𝑑𝑣𝑑𝑢
𝑣=1−𝑢

𝑣=0
 

𝑢=1

𝑢=0
= ∫ −

9

2
(𝑣2)|

𝑣=0

𝑣=1−𝑢

𝑑𝑢 
𝑢=1

𝑢=0
= ∫ −

9

2
(1 − 𝑢)2 + 0𝑑𝑢 

𝑢=1

𝑢=0
  

= ∫ −
9

2
(1 − 𝑢)2𝑑𝑢 

𝑢=1

𝑢=0
  

  =
3

2
(1 − 𝑢)3|

𝑢=0

𝑢=1

=
3

2
(1 − 1)3 −

3

2
(1 − 0)3 =

3

2
(0)3 −

3

2
(1)3 = 0 −

3

2
= −

3

2
   

 
 
 
 
 
 
 
 
 
 
 
 



 
16. Evaluate the following line integrals by parameterizing the curves: 

 
 ∫ 8𝑥𝑑𝑠

 

𝐶
  where 𝐶 is the arc of the parabola 𝑦 = 𝑥2 from (0,0) to (2,4) 

 
Since 𝑦 = 𝑥2, then we can parameterize the curve by letting 𝑥 = 𝑡 and 𝑦 = 𝑡2 for 0 ≤ 𝑡 ≤ 2  
Since 𝑥 = 𝑡 ⟹ 𝑑𝑥 = 1𝑑𝑡 and 𝑦 = 𝑡2 ⇒ 𝑑𝑦 = 2𝑡𝑑𝑡, 

 then 𝑑𝑠 = √(𝑑𝑥)2 + (𝑑𝑦)2 = √(1𝑑𝑡)2 + (2𝑡𝑑𝑡)2 = √1 + 4𝑡2𝑑𝑡 

∫ 8𝑥𝑑𝑠
𝑡=2

𝑡=0
=∫ 8𝑡√1 + 4𝑡2𝑑𝑡

𝑡=2

𝑡=0
=∫ 8𝑡(1 + 4𝑡2)

1

2𝑑𝑡
𝑡=2

𝑡=0
=(

2

3
(1 + 4𝑡2)

3

2)|
𝑡=0

𝑡=2

 

=
2

3
((17)

3

2 − (1)
3

2) =
2(17√17−1)

3
  

 

∫ 𝑦3𝑑𝑥 + 𝑥2𝑑𝑦
 

𝐶
  where 𝐶 is the arc of the parabola 𝑥 = 1 − 𝑦2 from (0, −1) to (0,1) 

 
Since 𝑥 = 1 − 𝑦2, then we can parameterize the curve by letting 𝑦 = 𝑡 and 𝑥 = 1 − 𝑡2 for −1 ≤ 𝑡 ≤ 1  
Since 𝑥 = 1 − 𝑡2 ⟹ 𝑑𝑥 = −2𝑡𝑑𝑡 and 𝑦 = 𝑡 ⇒ 𝑑𝑦 = 1𝑑𝑡, 

∫ 𝑦3𝑑𝑥 + 𝑥2𝑑𝑦
𝑡=1

𝑡=−1
=∫ (𝑡)3(−2𝑡𝑑𝑡) + (1 − 𝑡2)2(1𝑑𝑡)

𝑡=1

𝑡=−1
=∫ (−2𝑡4 + (1 − 𝑡2)2)𝑑𝑡

𝑡=1

𝑡=−1
= 

∫ (−2𝑡4 + 1 − 2𝑡2 + 𝑡4)𝑑𝑡
𝑡=1

𝑡=−1
= ∫ (1 − 2𝑡2 − 𝑡4)𝑑𝑡

𝑡=1

𝑡=−1
= (𝑡 −

2

3
𝑡3 −

1

5
𝑡5)|

𝑡=−1

𝑡=1

  

= (1 −
2

3
−

1

5
) − (−1 +

2

3
+

1

5
) = 1 −

2

3
−

1

5
+ 1 −

2

3
−

1

5
= 2 −

4

3
−

2

5
=

30

15
−

20

15
−

6

15
=

4

15
  

 
 

 ∫ 𝐅 ∙ 𝑑𝐫 
 

𝐶
  where 𝐅 = 𝑒𝑧𝐢 + 𝑥𝑧𝐣 + (𝑥 + 𝑦)𝐤 and 𝐶 is given by 𝐫 (𝑡) = 𝑡2𝐢 + 𝑡3𝐣 − 𝑡𝐤 for 0 ≤ 𝑡 ≤ 1 

 
Now 𝐫 = 〈𝑥, 𝑦, 𝑧〉  always.  Since we are told that  𝐫 (𝑡) = 𝑡2𝐢 + 𝑡3𝐣 − 𝑡𝐤 = 〈𝑡2, 𝑡3, −𝑡〉, then we know 
that we can parameterize the curve by letting 𝑥 = 𝑡2 and 𝑦 = 𝑡3 and 𝑧 = −𝑡 for 0 ≤ 𝑡 ≤ 1  

This means that 𝐅 (𝑡) = 𝑒𝑧𝐢 + 𝑥𝑧𝐣 + (𝑥 + 𝑦)𝐤 = 〈𝑒𝑧 , 𝑥𝑧, 𝑥 + 𝑦〉 = 〈𝑒−𝑡, −𝑡3, 𝑡2 + 𝑡3〉  
Furthermore, since 𝑥 = 𝑡2 ⟹ 𝑑𝑥 = 2𝑡𝑑𝑡 and 𝑦 = 𝑡3 ⇒ 𝑑𝑦 = 3𝑡2𝑑𝑡 and 𝑑𝑧 = −𝑡 ⇒ 𝑑𝑧 = −1𝑑𝑡 
 then 𝑑𝐫 = 〈𝑑𝑥, 𝑑𝑦, 𝑑𝑧〉 = 〈2𝑡, 3𝑡2, −1〉𝑑𝑡 

∫ 𝐅 ∙ 𝑑𝐫 
 

𝐶
=∫ 〈𝑒−𝑡, −𝑡3, 𝑡2 + 𝑡3〉 ∙ 〈2𝑡, 3𝑡2, −1〉𝑑𝑡

𝑡=1

𝑡=0
=∫ (2𝑡𝑒−𝑡 − 3𝑡5 − 𝑡2 − 𝑡3)𝑑𝑡

𝑡=1

𝑡=0
 

=(−2𝑡𝑒−𝑡 − 2𝑒−𝑡 −
1

2
𝑡6 −

1

3
𝑡3 −

1

4
𝑡4)|

𝑡=0

𝑡=1

= (−2𝑒−1 − 2𝑒−1 −
1

2
−

1

3
−

1

4
) − (0 − 2 − 0 − 0 − 0) 

= −
4

𝑒
−

1

2
−

1

3
−

1

4
+ 2 = −

48

12𝑒
−

6𝑒

12𝑒
−

4𝑒

12𝑒
−

3𝑒

12𝑒
+

24𝑒

12𝑒
=

11𝑒−48

12𝑒
 or 

11

12
−

4

𝑒
  

 
 
 

 
 
 
 
 
 
 
 
 
 
 



17. Use the Fundamental Theorem of Line Integrals to evaluate the following integral: 
 ∫ (2𝑦𝑧 + 2𝑥 + 𝑒𝑦)𝑑𝑥 + (2𝑥𝑧 + 𝑥𝑒𝑦 + 𝑒𝑧)𝑑𝑦 + (2𝑥𝑦 + 𝑦𝑒𝑧 + 𝜋 cos(𝜋𝑧))𝑑𝑧

 

𝐶
  

where 𝐶 is the line segment parameterized by the function  𝐫 (𝑡) = 4𝑡𝐢 + (2 − 2𝑡)𝐣 + 3𝑡𝐤 for 0 ≤ 𝑡 ≤ 1. 
 

Since the Fundamental Theorem of Line Integrals applies to vector fields that are conservative, we 
should be able to find a scalar function whose gradient is the vector field we are trying to integrate. 

Since ∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦 + 𝑅𝑑𝑧
 

𝐶
= ∫ 〈𝑃, 𝑄, 𝑅〉 ∙ 〈𝑑𝑥, 𝑑𝑦, 𝑑𝑧〉

 

𝐶
= ∫ 𝐅 ∙ 𝑑𝐫 

 

𝐶
, then our vector function is: 

𝐅 = 〈2𝑦𝑧 + 2𝑥 + 𝑒𝑦, 2𝑥𝑧 + 𝑥𝑒𝑦 + 𝑒𝑧 , 2𝑥𝑦 + 𝑦𝑒𝑧 + 𝜋 cos(𝜋𝑧)〉  
Let us see if we can construct a scalar function that will produce this as a gradient. 

If we had such a function 𝑓, its gradient would be: ∇𝑓 = 〈
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
〉.  So let us try to antidifferentiate 

the component functions appropriately and see what we come up with: 

∫2𝑦𝑧 + 2𝑥 + 𝑒𝑦𝑑𝑥 = 2𝑥𝑦𝑧 + 𝑥2 + 𝑥𝑒𝑦  

∫2𝑥𝑧 + 𝑥𝑒𝑦 + 𝑒𝑧𝑑𝑦 = 2𝑥𝑦𝑧 + 𝑥𝑒𝑦 + 𝑦𝑒𝑧  

∫2𝑥𝑦 + 𝑦𝑒𝑧 + 𝜋 cos(𝜋𝑧) 𝑑𝑧 = 2𝑥𝑦𝑧 + 𝑦𝑒𝑧 + sin(𝜋𝑧)  
Now our function is composed of several parts.  There can be terms which involve all three variables, 
some that involve only two, others that have only one, and so on.  In the end, it should look something 
like this: 𝑓 = 𝐴(𝑥, 𝑦, 𝑧) + 𝐵(𝑥, 𝑦) + 𝐶(𝑦, 𝑧) + 𝐷(𝑥, 𝑧) + 𝐸(𝑥) + 𝐹(𝑦) + 𝐺(𝑧) 
Comparing this to our antiderivatives, we get: 𝑓 = 2𝑥𝑦𝑧 + 𝑥𝑒𝑦 + 𝑦𝑒𝑧 + 0 + 𝑥2 + 0 + sin(𝜋𝑧) 

And so we have shown that 𝐅  is conservative and that it is the gradient of the potential function 
𝑓 = 2𝑥𝑦𝑧 + 𝑥𝑒𝑦 + 𝑦𝑒𝑧 + 𝑥2 + sin(𝜋𝑧)  
The Fundamental Theorem of Line Integrals tells us that to integrate a conservative function, we simply 
need to evaluate the potential function at the endpoints of the path.  The actual path itself does not 
matter, only the starting and ending positions do.  Thus, we look at the parameterized curve 𝐶 and 
determine where the endpoints of the path are: 
Since 𝐫 (𝑡) = 4𝑡𝐢 + (2 − 2𝑡)𝐣 + 3𝑡𝐤 and 0 ≤ 𝑡 ≤ 1,  
then at 𝑡 = 0 we get: 𝐫 (0) = 0𝐢 + (2 − 0)𝐣 + 0𝐤 = 〈0,2,0〉 
and at 𝑡 = 1 we get: 𝐫 (1) = 4𝐢 + (2 − 2)𝐣 + 3𝐤 = 〈4,0,3〉 
We evaluate the potential function at these endpoints, which gives us: 
𝑓(4,0,3) = 2(4)(0)(3) + 4𝑒0 + 0𝑒3 + 42 + sin(3𝜋) = 0 + 4 + 0 + 16 + 0 = 20  
𝑓(0,2,0) = 2(0)(2)(0) + 0𝑒2 + 2𝑒0 + 02 + sin(0) = 0 + 0 + 2 + 0 + 0 = 2  

Thus we know that: ∫ 𝐅 ∙ 𝑑𝐫 
 

𝐶
= ∫ ∇𝑓 ∙ 𝑑𝐫 

𝑡=𝑏

𝑡=𝑎
= 𝑓|𝑡=𝑎

𝑡=𝑏 = 𝑓(𝑏) − 𝑓(𝑎) = 20 − 2 = 18 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



18. Use Green’s Theorem to evaluate the integral ∫ 2𝑥2𝑦2𝑑𝑥 − 𝑥3𝑦𝑑𝑦
 

𝐶
 where 𝐶 is the arc of the  

parabola 𝑦 = 𝑥2 from (−1,1) to (1,1) and then a line connecting (1,1) to (−1,1). 
Now the region looks like this: 
It is obviously a loop, so we apply Green’s Theorem 
and rewrite the integral as:  
 

∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦
 

𝐶
= ∬ (

𝜕𝑄

𝜕𝑥
−

𝜕𝑃

𝜕𝑦
)𝑑𝑥𝑑𝑦

 

𝑅
= ∫ ∫ (−3𝑥2𝑦 − 4𝑥2𝑦)𝑑𝑦𝑑𝑥

𝑦=1

𝑦=𝑥2

𝑥=1

𝑥=−1
  

∫ ∫ −7𝑥2𝑦𝑑𝑦𝑑𝑥
𝑦=1

𝑦=𝑥2

𝑥=1

𝑥=−1
 = ∫ (−

7

2
𝑥2𝑦2)|

𝑦=𝑥2

𝑦=1

𝑑𝑥
𝑥=1

𝑥=−1
= ∫ −

7

2
𝑥2(1 − 𝑥4)𝑑𝑥

𝑥=1

𝑥=−1
  

∫ (−
7

2
𝑥2 +

7

2
𝑥6) 𝑑𝑥 = (−

7

6
𝑥3 +

1

2
𝑥7)|

𝑥=−1

𝑥=1

= (−
7

6
+

1

2
) − (

7

6
−

1

2
)

𝑥=1

𝑥=−1
= −

7

6
+

1

2
−

7

6
+

1

2
= −

14

6
+

2

2
  

−
7

3
+ 1 = −

7

3
+

3

3
= −

4

3
  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



19. Use Stokes’ Theorem to evaluate the integral ∫ 𝐅 ∙ 𝑑𝐫 
 

𝐶
  where 𝐅 = 𝑥𝑦 𝐢 + 𝑦𝑧 𝐣 + 𝑥𝑧 𝐤  

and 𝐶 is the triangle with vertices at (1,0,0) and (0,1,0) and (0,0,1) with counterclockwise orientation  
when viewed from above. 
The instructions tell us to use the Stokes’ Theorem.  So we need to rewrite the problem: 

∫ 𝐅 ∙ 𝑑𝐫 
 

𝐶
= ∬ curl(𝐅 ) ∙ 𝑑𝐒 

 

𝑆
, which we can do since 𝐶 is a closed loop. 

(This also prevents us from having to deal with a line integral that is made of three segments, which we 
would have to split into three separate problems and parameterize separately, which would be tedious.  
Stokes’ Theorem lets us write everything as a single double integral, which would be preferable.) 

We begin by calculating curl(𝐅 ) = ∇ × 𝐅 = 〈
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
〉 × 𝐅   

curl (𝐅 ) = ∇ × 𝐅 = 〈
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
〉 × 〈𝑥𝑦, 𝑦𝑧, 𝑥𝑧〉 = |

𝐢 𝐣 𝐤
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑥𝑦 𝑦𝑧 𝑥𝑧

|  

= (0 − 𝑦)𝐢 − (𝑧 − 0)𝐣 + (0 − 𝑥)𝐤 = −𝑦𝐢 − 𝑧𝐣 − 𝑥𝐤  

Thus curl (𝐅 ) = 〈−𝑦, −𝑧,−𝑥〉 

Now we need to parameterize the surface.   
The surface is a part of the plane 𝑥 + 𝑦 + 𝑧 = 1, which can be rewritten as 𝑧 = 1 − 𝑥 − 𝑦  
Thus, we can write points on the surface as: 
 𝐫 = 〈𝑥, 𝑦, 𝑧〉 = 〈𝑥, 𝑦, 1 − 𝑥 − 𝑦〉 
Thus we see that we can parameterize our formula purely in terms of the variables x and y, eliminating z. 

This allows us to rewrite our function as: curl (𝐅 ) = 〈−𝑦,−𝑧,−𝑥〉 = 〈−𝑦,−1 + 𝑥 + 𝑦,−𝑥〉 

We also need to make 𝑑𝐒 = 𝐫 𝑢 × 𝐫 𝑣 = 𝐫 𝑥 × 𝐫 𝑦 

Now since 𝐫 = 〈𝑥, 𝑦, 𝑧〉 = 〈𝑥, 𝑦, 1 − 𝑥 − 𝑦〉 then we know that 𝐫 𝑥 = 〈1,0, −1〉 and 𝐫 𝑦 = 〈0,1, −1〉 

𝐫 𝑥 × 𝐫 𝑦 = |
𝐢 𝐣 𝐤
1 0 −1
0 1 −1

| = (0 + 1)𝐢 − (−1 − 0)𝐣 + (1 − 0)𝐤  

𝐫 𝑥 × 𝐫 𝑦 = 〈1,1,1〉  

Observe that this vector points upward (as we would expect from the counterclockwise orientation) and we 
are ready to move on. 

Thus  curl(𝐅 ) ∙ 𝑑𝐒 = curl(𝐅 ) ∙ (𝐫 𝑥 × 𝐫 𝑦) 

= 〈−𝑦,−1 + 𝑥 + 𝑦,−𝑥〉 ∙ 〈1,1,1〉  
= −𝑦 − 1 + 𝑥 + 𝑦 − 𝑥  
= −1  
And all we need to do now is find our limits to be able to finish the problem. 
 
Now our surface looks like this:     Which lives above a region in 
                                                                                                           xy-plane that looks like this: 
 
 
 
 

This means that our integral is really: ∬ 𝐅 ∙ 𝑑𝐒 
 

𝑆
= ∬ 𝐅 ∙ (𝐫 𝑥 × 𝐫 𝑦)

 

𝑆
𝑑𝑦𝑑𝑥 

We can orient this integration so that it ends along the x-axis with limits of 𝑥 = 0 and 𝑥 = 1, which means 
that our y-limits will be the upper boundary which is the line 𝑦 = 1 − 𝑥 and the lower boundary is 𝑦 = 0  

So:  ∬ curl(𝐅 ) ∙ 𝑑𝐒 
 

𝑆
= ∫ ∫ −1𝑑𝑦𝑑𝑥

𝑦=1−𝑥

𝑦=0

𝑥=1

𝑥=0
  

∫ (−𝑦)|𝑦=0
𝑦=1−𝑥

𝑑𝑥
𝑥=1

𝑥=0
 =∫ (𝑥 − 1) − (0)𝑑𝑥

𝑥=1

𝑥=0
= ∫ 𝑥 − 1𝑑𝑥

𝑥=1

𝑥=0
  

= (
1

2
𝑥2 − 𝑥)|

𝑥=0

𝑥=1

 = (
1

2
− 1) − (0 − 0) = −

1

2
       



 

20. Use the Divergence Theorem to evaluate the surface integral ∬ 𝐅 ∙ 𝐧⃗⃗ 𝑑𝑆
 

𝑆
 (which can also be written as 

∬ 𝐅 ∙ 𝑑𝐒 
 

𝑆
) where 𝐅 = (5𝑥 + 2𝑥𝑦) 𝐢 + (4𝑥𝑧 − 𝑦2) 𝐣 + (𝑒𝑥 − 3𝑧) 𝐤 and 𝑆 is the surface bounded by the 

parabolic cylinder 𝑦 = 𝑥2 and the planes 𝑦 = 0 and 𝑥 = 1 and 𝑧 = 3 and and 𝑧 = 0 with outward 
orientation 
 
The instructions tell us to use the Divergence Theorem.  So we need to rewrite the problem: 

∬ 𝐅 ∙ 𝑑𝐒 
 

𝑆
= ∭ div(𝐅 )

 

𝑉
𝑑𝑉, which we can do since 𝑆 is a closed surface which looks like this: 

(This also prevents us from having to deal with a surface integral that is made of multiple  
edges. This particular one has five different edge surfaces, which we would have to split into  
separate problems, parameterizing each, which would take a very long time.   
The Divergence Theorem lets us write everything as a single triple integral,  
which is a tremendous improvement.) 

 

We begin by calculating div(𝐅 ) = ∇ ∙ 𝐅 = 〈
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
〉 ∙ 𝐅  

 div(𝐅 ) = 〈
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
,

𝜕

𝜕𝑧
〉 ∙ 〈5𝑥 + 2𝑥𝑦, 4𝑥𝑧 − 𝑦2, 𝑒𝑥 − 3𝑧〉 = 5 + 2𝑦 − 2𝑦 − 3 = 2 

This means that our integral is now: ∬ 𝐅 ∙ 𝑑𝐒 
 

𝑆
= ∭ 2

 

𝑉
𝑑𝑥𝑑𝑦𝑑𝑧  

Finding the limits of integration in xyz-form is not particularly difficult, since the region projects down into 
a “shadow” region beneath it in the xy-plane that looks like this: 

Thus our integral becomes: ∫ ∫ ∫ 2𝑑𝑧𝑑𝑦𝑑𝑥
𝑧=3

𝑧=0

𝑦=𝑥2

𝑦=0

𝑥=1

𝑥=0
 

 

 ∫ ∫ ∫ 2𝑑𝑧𝑑𝑦𝑑𝑥
𝑧=3

𝑧=0

𝑦=𝑥2

𝑦=0

𝑥=1

𝑥=0
 

∫ ∫ (2𝑧)|𝑧=0
𝑧=3𝑑𝑦𝑑𝑥

𝑦=𝑥2

𝑦=0

𝑥=1

𝑥=0
  

∫ ∫ (6) − (0)𝑑𝑦𝑑𝑥
𝑦=𝑥2

𝑦=0

𝑥=1

𝑥=0
  

∫ ∫ 6𝑑𝑦𝑑𝑥
𝑦=𝑥2

𝑦=0

𝑥=1

𝑥=0
  

∫ (6𝑦)|𝑦=0
𝑦=𝑥2

𝑑𝑥
𝑥=1

𝑥=0
  

∫ (6𝑥2) − (0)𝑑𝑥
𝑥=1

𝑥=0
  

∫ 6𝑥2𝑑𝑥
𝑥=1

𝑥=0
  

= (2𝑥3)|𝑥=0
𝑥=1 = 2 − 0 = 2  

 
 
 
 

 


