PHY 3060 Homework assignments

Homework #1
Due in class Thursday August 27, 2009
From Schroeder’s Thermal Physics do the following problems:
1.12,1.15,1.21, 1.23, & 1.27

Homework #2
Due in class Thursday Sept. 3, 2009
From Schroeder’s Thermal Physics do the following problems:
1.31,1.36,1.38,1.41, & 1.47

Homework #3
Due in class Thursday Sept. 10, 2009
From Schroeder’s Thermal Physics do the following problems:
1.49,1.60,2.1,2.6,2.8

Homework #4
Due in class Thursday Sept. 17, 2009
From Schroeder’s Thermal Physics do the following problems:
2.17,2.19

Homework #5 ,
Due in class Thursday Oct. 1, 2009
From Schroeder’s Thermal Physics do the following problems:

2.33,2.37,3.1,3.5

Homework #6
Due in class Thursday Oct. 8, 2009
From Schroeder’s Thermal Physics do the following problems:
3.8,3.10,3.17,3.28, 3.32,3.36

Homework #7
From Schroeder’s Thermal Physics do the following problems:

42,43,4.7,4.8,4.10

Homework #8 Practice problems
From Schroeder’s Thermal Physics do the following problems:

4.24,4.25,4.26

Homework #9
From Schroeder’s Thermal Physics do the following problems:

5.1,5.2,5.5,5.32,5.35,5.42




Homework #10
Due in class Monday Nov. 16, 2009

From Schroeder’s Thermal Physics do the following problems:
5.56, 5.60, 5.76, 5.89, 5.91

Homework #11
Due in class Thursday Nov. 19, 2009
From Schroeder’s Thermal Physics do the following problems:
6.5, 6.10, 6.12

Homework #12
6.22b-f, 6.47,7.9,7.11,7.13, 7.19




Problem 1.41. To measure the heat capacity of an ob ject, all you usually have
to do is put it in thermal contact with another object whose heat capacity you
know. As an example, suppose that a chunk of metal is immersed in boiling water
(100°C), then is quickly transferred into a Styrofoam cup containing 250 g of
water at 20°C. After a minute or so, the temperature of the contents of the cup is
24°C. Assume that during this time no significant energy is transferred between
the contents of the cup and the surroundings. The heat capacity of the cup itself
is negligible.

(a) How much heat is gained by the water?

(b) How much heat is lost by the metal?

(c) What is the heat capacity of this chunk of metal?

(d) If the mass of the chunk of metal is 100 g, what is its specific heat capacity?

Problem 1.4.7, ?.’our 200-g cup of tea is boiling-hot. About how much ice should
you add jco I?rmg it down to a comfortable sipping temperature of 65°C? (Assume
that the ice is initially at ~15°C. The specific heat capacity of ice is 0.5 cal/g-°C.)

Problem 1.49. Consider the combustion of one mole of Hz with 1/2 mole of Og
under standard conditions, as discussed in the text. How much of the heat energy
produced comes from a decrease in the internal energy of the system, and how
much comes from work done by the collapsing atmosphere? (Treat the volume of
the liquid water as negligible.)

Problem 1.60. A frying pan is quickly heated on the stovetop to 200°C. It has
an iron handle that is 20 em long. Estimate how much time should pass before
the end of the handle is too hot to grab with your bare hand. (Hint: The cross-
sectional area of the handle doesn’t matter. The density of iron is about 7.9 g/cm®
and its specific heat is 0.45 J/g-°C).

Problem 2.1. Suppose you flip four fair coins.
(a) Make a list of all the possible outcomes, as in Table 2.1.
(b) Make a list of all the different “macrostates” and their probabilities.

(c¢) Compute the multiplicity of each macrostate using the combinatorial for-
mula 2.6, and check that these results agree with what you got by brute-
force counting.

Problem 2.6. Calculate the multiplicity of an Einstein solid with 30 oscillators
and 30 units of energy. (Do not attempt to list all the microstates.)

Problem 2.8. Consider a system of two Einstein solids, A and B, each containing
10 oscillators, sharing a total of 20 units of energy. Assume that the solids are
weakly coupled, and that the total energy is fixed.

(a) How many different macrostates are available to this system?
(b) How many different microstates are available to this system?

(c) Assuming that this system is in thermal equilibrium, what is the probability
of finding all the energy in solid A?

(d) What is the probability of finding exactly half of the energy in solid A?

(e) Under what circumstances would this system exhibit irreversible behavior?




Problem 1.12. Calculate the average volume per molecule for an ideal fas az
room temperature and atmospheric pressure. Then take the cube r‘oo’E1 ' ;) gee
an estimate of the average distance between molecules. How does this distanc

compare to the size of a small molecule like No or HoO?

Problem 1.15. Estimate the average temperature of the air inside g hot-air

balloon Assume that the total mass of the unfilled balloon and
payload is 500 kg. What is the mass of the air inside the balloon?

Problem 1.21. During a hailstorm, hailstones with an average mass of 2 g and
a speed of 15 m/s strike a window pane at a 45° angle. The ares of the window
is 0.5 m? and the hailstones hit it at a rate of 30 per second. What average

pressure do they exert on the window? How does this compare to the pressure of
the atmosphere?

Problem 1.23. Calculate the total thermal energy in a liter of helium at room

temperature and atmospheric pressure. Then repeat the calculation for a liter of
air.

Problem 1.27. Give an example of a process in which no heat is added to a
system, but its temperature increases. Then give an example of the opposite: a
process in which heat is added to & system but its temperature does not change.

Problem 1.31. Imagine some helium in a cylinder with an initial volume of 1 liter
and an initial pressure of 1 atm. Somehow the helium is made to expand to a final

volume of 3 liters, in such a way that its pressure rises in direct proportion to its
volume.

(a) Sketch a graph of pressure vs. volume for this process.

(b) Calculate the work done on the gas during this process, assuming that there
are no “other” types of work being done.

(c) Calculate the change in the helium’s energy content during this process.

(d) Calculate the amount of heat added to or removed from the helium during
this process.

(e) Describe what you might do to cause the pressure to rise as the helium
expands.

Problem 1.836. In the course of pumping up a bicycle tire, a litcjcr of (ajgr al,‘;
atmospheric pressure is compressed adiabatically to a pressure of 7 atm.

mostly diatomic nitrogen and oxygen.)
(a) What is the final volume of this air after compression?
(b) How much work is done in compressing the air?
(c) If the temperature of the air is initially 300 K, what is the temperature

after compression?




Problem 2.17. Use the methods of this section to derive a formula, similar to
equation 2.21, for the multiplicity of an Einstein solid in the “low-temperature’

limit, ¢ < N.

Problem 2.19. Use Stirling’s approximation to find an approximate formula for
the multiplicity of a two-state paramagnet. Simplify this formula in the limit
Ny < N to obtain Q ~ (Ne/N )™V*. This result should look very similar to your
answer to Problem 2.17; explain why these two systems, in the limits considered,
are essentially the same.

Problem 2.33. Use the Sackur-Tetrode equation to calculate the entropy of a
mole of argon gas at room temperature and atmospheric pressure. Why is the
entropy greater than that of a mole of helium under the same conditions?

Problem 2.37. Using the same method as in the text, calculate the entropy
of mixing for a system of two monatomic ideal gases, A and B, whose relative
proportion is arbitrary. Let NV be the total number of molecules and let z be the
fraction of these that are of species B. You should find

ASmixing = —Nk[zlnz + (1—2) In(1~z)].
Check that this expression reduces to the one given in the text when z = 1 /2.
Problem 3.1. Use Table 3.1 to compute the temperatures of solid A and solid B

when g4 = 1. Then compute both temperatures when ga = 60. Express your
answers in terms of €/k, and then in kelvins assuming that e = 0.1 eV.

g4 Q4 Sa/k gB 1p Sg/k Diotal Stotal/k

0 1 0 100 2.8x10% 1875 | 2.8x10%  187.5
1 300 5.7 99 9.3x10% 1864 | 28x10% 1921
2 45150  10.7 98 3.1x10% 1853 | 1.4%10%  196.0
11 53x10° 454 89 11x107 1751 | 5.9x10%  220.5
12 14x102 487 88 34x107 173.9 | 47x10% 2226

13 33x102 519 87 1.0x10™ 1727 3.5x 1097  224.6

59 2.2x10% 1574 41 3.1x10% 107.0 6.8 x 1014 264.4
60 1.3 x10% 159.1 40 5.3 x10% 1055 6.9 x 10M4  264.4
61 7.7x10% 160.9 39 8.8x10% 103.5 6.8 x 1014 264.4

100 1.7 x 10% 221.6 0 1 0 1.7x10%  221.6

Table 3.1. Macrostates, multiplicities, and entropies of a system of two Einstein
solids, one with 300 oscillators and the other with 200, sharing a total of 100 units
of energy.




Problem 3.5. Starting with the result of Problem 2.17, find a formula for the
temperature of an Einstein solid in the limit g < N. Solve for the energy as a
function of temperature to obtain U/ = Ne e~¢/kT (where € is the size of an energy
unit).

Problem 3.8. Starting with the result of Problem 3.5, calculate the heat capac-
ity of an Einstein solid in the low-temperature limit. Sketch the predicted heat
capacity as a function of temperature. (Note: Measurements of heat capacities of
actual solids at low temperatures do not confirm the prediction that you will make
in this problem. A more accurate model of solids at low temperatures is presented
in Section 7.5.)

Problem 8.10. An ice cube (mass 30 g) at 0°C is left sitting on the kitchen table,
where it gradually melts. The temperature in the kitchen is 25°C.

(a) Calculate the change in the entropy of the ice cube as it melts into water
at 0°C. (Don’t worry about the fact that the volume changes somewhat.)

(b) Calculate the change in the entropy of the water (from the melted ice) as
its temperature rises from 0°C to 25°C.

(c) Calculate the change in the entropy of the kitchen as it gives up heat to
the melting ice/water.

(d) Calculate the net change in the entropy of the universe during this process.
Is the net change positive, negative, or zero? Is this what you would expect?

Problem 3.17. Verify every entry in the third line of Table 3.2 (starting with
Ny = 98).

Ny U/uB  M/Ny 0 S/k  kT/uB  C/Nk
100 —100 1.00 1 0 0 —
99 —08 .98 100 4.61 A7 074
98 —96 .96 4950 8.51 54 310
97 —94 94 1.6x105 11.99 - .60 .365
52 —4 04 9.3x10%  66.70 25.2 .001
51 —2 02 9.9%x10%2  66.76 50.5 —
50 0 0 1.0x10% 66.78 00 —
49 2 —-.02  9.9x10%® 66.76 —50.5 —
48 4 —-.04 9.3x10% 66.70 —25.2 .001
1 98 —.98 100 4.61 — A7 074
0 100 —~1.00 1 0 0 —

Table 3.2. Thermodynamic properties of a two-state paramagnet consisting of
100 elementary dipoles. Microscopic physics determines the energy U and total
magnetization M in terms of the number of dipoles pointing up, Ny. The multi-
plicity €2 is calculated from the combinatoric formula, 3.27, while the entropy S is
kInQ. The last two columns show the temperature and the heat capacity, calcu-
lated by taking derivatives as explained in the text.




Problem 3.28. A liter of air, initially at room temperature and atmospheric
pressure, is heated at constant pressure until it doubles in volume. Calculate the
increase in its entropy during this process.

Problem 3.32. A cylinder contains one liter of air at room temperature (300 K)
and atmospheric pressure (10° N /m?). At one end of the cylinder i's a m.assless
piston, whose surface area is 0.01 m?. Suppose that you push th.e Plston in very
suddenly, exerting a force of 2000 N. The piston moves only one millimeter, before
it is stopped by an immovable barrier of some sort.

(a) How much work have you done on this system?

(b) How much heat has been added to the gas?

(c) Assuming that all the energy added goes into the gas (not the Piston or
cylinder walls), by how much does the internal energy of the gas increase?

(d) Use the thermodynamic identity to calculate the change in the entropy of
the gas (once it has again reached equilibrium).

Problem 3.36. Consider an Einstein solid for which both N and ¢ are much
greater than 1. Think of each oscillator as a separate “particle.”

(a) Show that the chemical potential is

= —kT1n<M).

N

(b) Discuss this result in the limits N > ¢ and N < g, concentrating on the
question of how much S increases when another particle carrying no energy
is added to the system. Does the formula make intuitive sense?

Problem 4.2. At a power plant that produces 1 GW (109 watts) of electricity,
the steam turbines take in steam at a temperature of 500°C, and the waste heat
is expelled into the environment at 20°C.

(a) What is the maximum possible efficiency of this plant?

(b) Suppose you develop a new material for making pipes and turbines, which
allows the maximum steam temperature to be raised to 600°C. Roughly
how much money can you make in a year by installing your improved
hardware, if you sell the additional electricity for 5 cents per kilowatt-hour?
(Assume that the amount of fuel consumed at the plant is unchanged.)

Problem 4.3. A power plant produces 1 GW of electricity, at an efficiency of 40%
(typical of today’s coal-fired plants).

(a) At what rate does this plant expel waste heat into its environment?

(b) Assume first that the cold reservoir for this plant is a river whose flow rate
is 100 m? /s. By how much will the temperature of the river increase?

(c) To avoid this “thermal pollution” of the river, the plant could instead
be cooled by evaporation of river water. (This is more expensive, but in
some areas it is environmentally preferable.) At what rate must the water
evaporate? What fraction of the river must be evaporated?

Problem 4.7. Why must you put an air conditioner in the window of a building,
rather than in the middle of a room?




Problem 4.8. Can you cool off your kitchen by leaving the refrigerator door
open? Explain.

Problem 4.10. Suppose that heat leaks into your kitchen refrigerator at an
average rate of 300 watts. Assuming ideal operation, how much power must it

draw from the wall?

Problem 4.24. Calculate the efficiency of a Rankine cycle that is modified from
the parameters used in the text in each of the following three ways (one at a
time), and comment briefly on the results: (a) reduce the maximum tem;a'eltature
to 500°C; (b) reduce the maximum pressure to 100 bars; (¢) reduce the minimum

temperature to 10°C.

Problem 4.25. In a real turbine, the entropy of the steam will increase somewhat.

How will this affec’g the percentages of liquid and gas at point 4 in the cycle? How
will the efficiency be affected?

Problem 4.26. A coal-fired power plant, with parameters similar to those used
in the text above, is to deliver 1 GW (10° watts) of power. Estimate the amount
of steam (in kilograms) that must pass through the turbine(s) each second.

Problem 5.1. Let the system be one mole of argon gas at room tempe'ra,ture an‘d
atmospheric pressure. Compute the total energy (kinetic only, n'eglectmg atomic
rest energies), entropy, enthalpy, Helmholtz free energy, and Gibbs free energy.

Express all answers in SI units.

Problem 5.2. Consider the production of ammonis from nitrogen and hydrogen,
No + 3Hy — 2NHs,

at 298 K and 1 bar. From the values of AH and S tabulated at the back of this
book, compute AG for this reaction and check that it is consistent with the value
given in the table.

Problem 5.5. Consider a fuel cell that uses methane (“natural gas”) as fuel. The
reaction is
CHq + 205 — 2H50 + COs.

(a) Use the data at the back of this book to determine the values of AH and
AG for this reaction, for one mole of methane. Assume that the reaction
takes place at room temperature and atmospheric pressure.

(b) Assuming ideal performance, how much electrical work can you get out of
the cell, for each mole of methane fuel?

(c) How much waste heat is produced, for each mole of methane fuel?
(d) The steps of this reaction are
at — eléectrode: CHy + 2H30 — COg +8H™ + 8e ;
at + electrode: 209 + 8HT 48~ — 4H50.

What is the voltage of the cell?




Problem 5.32. The density of ice is 917 kg/m®.

(2) Use the Clausius-Clapeyron relation to explain why the slope of the phase
boundary between water and ice is negative.

(b) How much pressure would you have to put on an ice cube to make it melt
at —1°C?

(c) Approximately how deep under a glacier would you have to be before the
weight of the ice above gives the pressure you found in part (b)? (Nc?te
that the pressure can be greater at some locations, as where the glacier
flows over a protruding rock.)

(d) Make a rough estimate of the pressure under the blade of an ice skate, and

- calculate the melting temperature of ice at this pressure. Some authors
have claimed that skaters glide with very little friction because the increased
pressure under the blade melts the ice to create a thin layer of water. What
do you think of this explanation?

Problem 5.35. The Clausius-Clapeyron relation 5.47 is a differential equation
that can, in principle, be solved to find the shape of the entire phase-boundary
curve. 'To solve it, however, you have to know how both L and AV depend on
temperature and pressure. Often, over a reasonably small section of the curve, you
can take L to be constant. Moreover, if one of the phases is a gas, you can usually
neglect the volume of the condensed phase and just take AV to be the volume of
the gas, expressed in terms of temperature and pressure using the ideal gas law.
Making all these assumptions, solve the differential equation explicitly to obtain
the following formula for the phase boundary curve:

P = (constant) x e~ L/BT

This result is called the vapor bressure equation. Caution: Be sure to use this
formula only when all the assumptions just listed are valid.

Problem 5.42, Ordinarily, the partial pressure of water vapor in the air is less
than the equilibrium vapor pressure at the ambient temperature; this is why a cup
of water will spontaneously evaporate. The ratio of the partial pressure of water
vapor to the equilibrium vapor pressure is called the relative humidity. When
the relative humidity is 100%, so that water vapor in the atmosphere would be in
diffusive equilibrium with a cup of liquid water, we say that the air is saturated.*
The dew point is the temperature at which the relative humidity would be 100%,
for a given partial pressure of water vapor.

(a) Use the vapor pressure equation (Problem 5.35) and the data in Figure 5.11
to plot a graph of the vapor pressure of water from 0°C to 40°C. Notice

that the vapor pressure approximately doubles for every 10° increase in
temperature.

(b) The temperature on a certain summer day is 30°C. What is the dew point
if the relative humidity is 90%? What if the relative humidity is 40%?

Problem 5.56. Prove that the entropy of mixing of an ideal mixture has an
infinite slope, when plotted vs. z, at z = Q and z = 1.

Problem 5.60. Suf)pose you start wit
oxygen. Describe what happens as th
sure to give the temperatures and co

h a liquid mixture of 60% nitrogen and 40%
& temperature of this mixture increases. Be
mpositions at which boiling begins and ends,




Problem 5.76. Seawater has a salinity of 3.5%, meaning that if you boil away a
kilogram of seawater, when you’re finished you'll have 35 g of solids (mostly 1J\rI aCl)
left in the pot. When dissolved, sodium chloride dissociates into separate Na™ and
Cl™ ions.

(a) Calculate the osmotic pressure difference between seawater and fresh water.
Assume for simplicity that all the dissolved salts in seawater are NaCl.

(b) If you apply a pressure difference greater than the osmotic pressure to a
solution separated from pure solvent by a semipermeable membrane, you
get reverse osmosis: a flow of solvent out of the solution. This process
can be used to desalinate seawater. Calculate the minimum work required
to desalinate one liter of seawater. Discuss some reasons why the actual
work required would be greater than the minimum.

Problem 5.89. The standard enthalpy change upon dissolving one mole of oxygen
at 25°C is —11.7 kJ. Use this number and the van’t Hof equation (Problem 5.85)
to calculate the equilibrium (Henry’s law) constant for oxygen in water at 0°C and
at 100°C. Discuss the results briefly.

Problem 5.91. When carbon dioxide “dissolves” in water, essentially all of it
reacts to form carbonic acid, Hy COs3:

COz(g) + H20(1) «— HyCO3z(aq).
"The carbonic acid can then dissociate into HT and bicarbonate ions,
H3CO3(aq) +— HT(aq) + HCOJ (aq).

(The table at the back of this book gives 'thermodynamic data for both of these
reactions.) Consider a body of otherwise pure water (or perhaps a raindrop) that
is in equilibrium with the atmosphere near sea level, where the partial pressure of
carbon dioxide is 3.4 x 10™* bar (or 340 parts per million). Calculate the molality
of carbonic acid and of bicarbonate ions in the water, and determine the pH of the
solution. Note that even “natural” precipitation is somewhat acidic.

Problem 6.5. Imagine a particle that can be in only three states, with energies
—0.05 eV, 0, and 0.05 eV. This particle is in equilibrium with a reservoir at 300 K.

(a) Calculate the partition function for this particle.
(b) Calculate the probability for this particle to be in each of the three states.

(c) Because the zero point for measuring energies is arbitrary, we could just as
well say that the energies of the three states are 0, +0.05 eV, and +0.10 eV,

respectively. Repeat parts (2) and (b) using these numbers. Explain what
changes and what doesn't,

Problem 6.10. A water molecule can vibrate in various ways, but the easiest
type of vibration to excite is the “fexing” mode in which the hydrogen atoms move
toward and away from each other but the HO bonds do not stretch. The oscillations
of this mode are approximately harmonic, with a frequency of 4.8 x 1012 Hz. As
for any quantum harmonic oscillator, the energy levels are %h I %h 7, g’-h f, and so
on. None of these levels are degenerate.

(a) Calculate the probability of a water molecule being in its flexing ground
state and in each of the first two excited states, assuming that it is in equi-
librium with a reservoir (say the atmosphere) at 300 K. (Hint: Calculate Z
by adding up the first few Boltzmann factors, until the rest are negligible.)

(b) Repeat the calculation for a water molecule in equilibrium with a reservoir
at 700 K (perhaps in a steam turbine).




Problem 6.12. Cold interstellar molecular clouds often contain the molecule
cyanogen (CN), whose first rotational excited states have an energy of 4.7x1074 eV
(above the ground state). There are actually three such excited states, all with the
same energy. In 1941, studies of the absorption spectrum of starlight that passes
through these molecular clouds showed that for every ten CN muolecules that are
in the ground state, approximately three others are in the three first excited states
(that is, an average of one in each of these states). To account for this data,
astronomers suggested that the molecules might be in thermal equilibrium with
some “reservoir” with a well-defined temperature. What is that temperature?™

Problem 6.22. In most paramagnetic materials, the individual magnetic particles
have more than two independent states (orientations). The number of independent
states depends on the particle’s angular momentum “quantum number” j, which
must be a multiple of 1/2. For j = 1/2 there are just two independent states, as
discussed in the text above and in Section 3.3. More generally, the allowed values
of the z component of a particle’s magnetic moment are

Hz = —JOpu, (=7 + 1)5#» cee (j - 1)5u> j5ua

where §,, is a constant, equal to the difference in p, between one state and the
next. (When the particle’s angular momentum comes entirely from electron spins,
S, equals twice the Bohr magneton. When orbital angular momentum also con-
tributes, d, is somewhat different but comparable in magnitude. For an atomic
nucleus, ¢, is roughly a thousand times smaller.) Thus the number of states is
27 4+ 1. In the presence of a magnetic field B pointing in the z direction, the
particle’s magnetic energy (neglecting interactions between dipoles) is —uzB.
(a) Prove the following identity for the sum of a finite geometric series:
l+g+a’+- 42" =
1l—2z

(Hint: Either prove this formula by induction on n, or write the series as a
difference between two infinite series and use the result of Problem 6.20(a).)

(b) Show that the partition function of a single magnetic particle is

7 S + )]
sinh &’

where b = 36, B.

(c) Show that the total magnetization of a system of N such particles is
M = N§, [(j + 1) cothb(j + 1)] — 1 coth g],
where coth z is the hyperbolic cotangent, equal to coshz/sinhz. Plot the
quantity M/Nd, vs. b, for a few different values of j.

(d) Show that the magnetization has the expected behavior as T — 0.

(e) Show that the magnetization is proportional to 1/T" (Curie’s law) in the
limit T — oco. (Hint: First show that cothz ~ % + £ when z < 1.)

(f) Show that for j = 1/2, the result of part (c) reduces to the formula derived
in the text for a two-state paramagnet.

Problem 6.47. Estimate the temperature at which the translational motion of a
nitrogen molecule would freeze out, in a box of width 1 cm.




Problem 7.9. Compute the quantum volume for an Nz molecule at room tem-
perature, and argue that a gas of such molecules at atmospheric pressure can be
treated using Boltzmann statistics. At about what temperature would quantum
statistics become relevant for this system (keeping the density constant and pre-
tending that the gas does not liquefy)?

Problem 7.11. For a system of fermions at room temperature, compute the
probability of a single-particle state being occupied if its energy is

(a) 1€V less than u

(b) 0.01 eV less than
(c) equal to u

(d) 0.01 eV greater than p
(e) 1€V greater than u

Problem 7.13. For a system of bosons at room temperature, compute the average
occupancy of a single-particle state and the probability of the state containing 0,
1, 2, or 3 bosons, if the energy of the state is

(a) 0.001 eV greater than u

(b) 0.01 eV greater than p

(c) 0.1 eV greater than f

(d) 1 eV greater than p

Problem 7.19. FEach atom in a chunk of copper contributes one conduction
electron. Look up the density and atomic mass of copper, and calculate the Fermi
energy, the Fermi temperature, the degeneracy pressure, and the contribution of
the degeneracy pressure to the bulk modulus. Is room temperature sufficiently low
to treat this system as a degenerate electron gas?




