Course Information
Days/Time: 12:30-1:45, Tue and Thur., Shepard Bldg., Rm 108
Pre-requisite for undergraduates: SUS 1500, Introduction to Sustainability
Instructor: Dr. K. Lindeman, Professor, Dept. of Ocean Engineer. & Marine Sciences
Office and Hours: Rm 103 Shepard Bldg., Tue: 1400-1600; Wed, 1300-1700; Thur 1400-1630

Course Description:
The goal is to learn and further explore combinations of tools that can advance innovations in sustainability among complex socio-economic and environmental systems. Principles of governance are examined and integrated using tools that include complexity theory, cybernetics, resilience, behavioral economics, political ecology, social networks, and risk-based decision assessment. Practical applications towards managing self-organizing systems including functioning socio-political systems will be made at local through international scales.

Operational features of system sustainability are emphasized including stocks and flows, feedback loops, limits, response delays, orderly and chaotic perturbations, networks and modularity, resilience and adaptive capacity, system traps, shifting dominance of feedback, tipping points, and post-transition system behaviors. Best practices in maintaining systems through non-equilibrium processes including resilience, complex adaptive theory, and learning organizations are examined. The management of emergent properties and other guaranteed surprises is evaluated using examples from economic, environmental, and social capital. Means to identify, measure, adapt and communicate performance indicators of sustainability are examined in government, business, and non-profit systems.

Textbook:

Additional Reading:

The course will also include journal research articles; government, industry, and NGO reports; and articles from web and print media. Readings will be posted on Canvas.

Grading:
50% Homework, much is in support of the systems analysis project
25% Midterm
25% Final exam
Student Learning Outcomes include
- Familiarity with the history and principles of system dynamics and associated fields as applied in sustainability and governance.
- Understanding of challenges and opportunities for applications of system sciences and cybernetics in real-world governance.
- Recognition of the inherent non-linear and chaotic properties of complex adaptive systems and tools for resilience.
- Ability to interpret the roles of cultural conditioning and other socio-economic drivers in complex systems decision-making.
- Knowledge of basic political components of governance, and factors that may or may not limit the application of sustainability sciences.
- Experience with the measurement of system performance utilizing indicators and other tools.
- Improved skills for the analysis of complex systems and paths towards more efficient governance.
- Experience with building and giving presentations on systems-based sustainability challenges and solutions in governance systems.

In Addition
- Attending and contributing to class is essential. Frequent unexcused absences can impact your final grade. Inform the instructor early if there are attendance issues.

- Fundamental writing skills are of considerable value in this course and in many jobs. Students should sharpen your writing skills with this or other useful tutorials: http://www.bristol.ac.uk/arts/exercises/grammar/grammar_tutorial/index.htm

- Also, highly recommended for developing your writing, a lifetime pursuit, is the little classic by Strunk and White titled *The Elements of Style*; it is very inexpensive on Amazon.