

Background

- Martian and lunar regolith simulants are used to understand the future of terrestrial life on other celestial bodies.
- The regolith simulants consist of material that is terrestrially sourced and therefore is susceptible to contamination by microorganisms that don't exist on the surfaces of Mars and the Moon.
- We hypothesize that the regolith simulants are not sterile fresh out of the bag
- There is a lack of knowledge regarding sterility of the simulants.
- These microorganisms could affect research conducted using the regolith simulants. This could especially impact plant growth studies either through the presence of pathogens or plant growth promoting microorganisms.
- How do we determine if the simulants are sterile?

Figure 1: Surface Sterilization. Bags and surfaces were wiped with ethanol to ensure sterile working conditions.

Procedure

- Fresh regolith simulant samples were collected and cultured on various agars to determine microbial count.
- Repeat using autoclaved regolith simulant to determine the efficacy of this sterilization method
- The three different growth mediums used in the procedure are Nutrient Agar, Sabouraud Dextrose (SD) Agar and Glycerol Yeast Extract (GYE) Agar.

Evaluating the Efficacy of Sterilization Techniques on Martian and Lunar Regolith Simulants Markus Laupstad, Caitlyn Hubric, Emily Soucy, Davonya Cheek Faculty Advisor: Andrew G. Palmer Departments of: Ocean Engineering and Marine Sciences; **Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology**

Agar types used in the procedure:

Nutrient Agar General purpose, bacteria

SD Agar Fungi, dermatophytes

Results

Figure 4: Cultivations from fresh regolith samples, with soil for control.

		(CFU/g of Regolit	h Sim
3000000				
2500000				
2000000				
H 1500000				
1000000				
500000	349301	258799	1/137 -	
0	-9	0	4437	
0	MGS-1	JEZ-1	l	_HS-1
			Fresh Au	toclave

Conclusion

- Regolith simulants are not sterile and could be a reservoir of plant growth promoting bacteria or pathogens.
- However, these populations are not as significant as expected.
- We recommend that regolith simulants must be sterilized before using it for biological research.

GYE Agar Spore forming bacteria, Actinomycetes

Figure 2: Fresh regolith simulant diluted and cultured on the different growth mediums.

Figure 5: Cultivations from autoclaved regolith samples.

MMS-1

Soil

Future Directions

Figure 3: Autoclaved regolith simulant cultured on the different growth mediums.

Grow plants in regolith after Loss on Ignition to see how well they grow with the organic matter removed.

• Perform experiment using other sterilization techniques to determine most efficient sterilization method.

References

• Leboffe, M. J., & Pierce, B. E. (2015). *Microbiology:* Laboratory theory and application (4th ed., pp 641-642)...