ENGINEERING g SCIENCE STUDENT DESIGN SHIWCASE

FLORIDA TECH

Faculty Advisor: Douglas Willard, Dept. of Mechanical and Civil Engineering, Florida Institute of

Team Lockheed Poster Presentation Zachary Pavel, Benjamin Hornberger, Sierra Smith, Vincent Palermo, Xiwen Liu, Zach Blanchard, Zhenshan Shi

Technology

MISSION STATEMENT

- Due to its slow response speed and increased safety risks for operators, the traditional crane has lost its dominance in operations, necessitating the design of a new mechanical device to replace it and address these issues.

OBEJECTIVES

- Design, build, and showcase a machine that can handle a 200lb cylinder, maneuver it in 5 degrees of freedom while performing specific operations, all without the need for overhead lifting devices.

OPERATION

- The machine consists of several key parts including the base, claws, transmission, and scissor lift.

FOUNDATION \& LIFT SUBSYSTEMS
Using Creo for modeling test and operating test.
Minimum Yield Margin of Safety (Msy)is 10.9
Minimum Ultimate Margin of Safety (Msu)is 7.53

CLAW SUBSYSTEM

Used Auto CAD and Creo for modeling and testing
Minimum Yield Margin of Safety (Msy)is 2.14
Minimum Ultimate Margin of Safety (Msu)is 1.07
Utilizes a 4:1 Gear Ratio

SAFETY

Use engineering design handbook calculations for safety compliance

Use ANSYS Workbench software to simulate and predict system safety by applying FEA and othe computational methods to evaluate system behavior.

FUTUREWORK \& SOCIAL EFFECT

Could be more cost-effective and efficient than cranes, potentially reducing costs and increasing productivity.

Improve safety in worksites, reduce costs, and increase productivity.

Potentially create new job opportunities in the development, installation, and maintenance of the new system.

ACKNOWLEDGEMENT

- We thank Lockheed for their generous funding and support, as well as Austin Taft and Brandon Nauman for their invaluable contributions to this project. We also appreciate the support of our colleagues and friends.

