

Problem Statement

- aerodynamics
- enhances fuel efficiency and obstacle navigation

Final Vehicle With Body

We extend our sincere gratitude to Larsen Motorsports, the American Muscle Car Museum, Felix Gabriel, André Robidoux, Peter Zappala, Ethan Bair, Zac Gross, Dr. Darshan Yadav, Dr. Eric Swenson, Dr. Ilya Mingareev, and Dr. Douglas E. Willard for their invaluable assistance and support throughout the project.

Shell Eco-Marathon Justin Woodyard, Diego Machado Diesel, Evan Shippee, Jack Golightly, Jameson Isom, Doug Goetz, Sean-Taye Scott, Abdulaziz Alhaidari, Basel Adil, Lander Holsinger, Omar Basrawi, Daniele Locci, Mohammed Hawsawi Faculty Advisor: Dr. Darshan G. Pahinkar, Dept. of Mechanical Engineering, Florida Institute of Technology

Vehicle design focuses on lightweight materials, efficient powertrains, and

Incorporation of driver assistance and energy recovery systems further

Acknowledgments

Design And Analysis

Sequential design of aerodynamic body, drivetrain, and chassis engineering Computation fluid mechanics of the body Finite element analysis of components Fuel Map stoichiometric air-to-fuel mixture to ensure efficiency

Final Vehicle Without Body

FU	el	N	la	\mathbf{b}	fo)r	Er	Ŋ	in	e
PDM (PDM)										
				vianifold Pressure (psi/inHg)						
	-26.6	-23.6	-20.7	-17.7	-14.8	-11.8	-8.9	-5.9	-3.0	0.0
7500	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	11.9	11.9
7000	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.0	12.0
6500	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1
6000	12.5	12.5	12.5	12.5	12.4	12.3	12.2	12.1	12.1	12.1
5500	12.8	12.8	12.8	12.8	12.6	12.4	12.3	12.2	12.1	12.1
5000	13.6	13.6	13.6	13.2	13.0	12.8	12.6	12.3	12.2	12.2
4500	14.2	14.2	14.2	14.2	14.2	13.0	12.7	12.4	12.2	12.2
4000	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	12.5	12.2
3500	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	12.5	12.5
3000	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	12.5
2500	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	12.8
2000	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	12.8
1500	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	12.8
1000	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	12.8
500	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	12.8
0	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	12.8

- Reducing friction in the drivetrain
- drag

_ORIDA TECH MOTORSPORTS

Future Works

Design a body that covers the wheels to reduce

Use an engine with an output shaft