Sky View Through an Archway on Campus

Editing Help

Please reference the Faculty Profile Editing Guide if you have any questions or issues updating your profile. If you receive any error notices please contact

Charles Fulton

Emeritus Faculty | College of Engineering and Science - Mathematics and Systems Engineering

Personal Overview

  • Spectral theory of ordinary differential operators
  • Mathematical software for Sturm-Liouville problems
  • Numerical linear algebra
  • Mathematical software  linear algebra problems on vector and parallel computers

Research in all of the above areas has been supported by six National Science Foundation Grants over the last 30 years.

Educational Background

B.A. University of Redlands, 1965
M.S. University of Minnesota, 1967
D.Sc. Rheinisch-Westfalische Technische Hochschule Aachen, Germany, 1973

Professional Experience

Recent Conference talks on current research have been given in sessions Dr. Fulton has organized at:

(i)  9th  Meeting of American Institute of Mathematical Sciences (AIMS) in Orlando, Florida, July 2012
(ii) World Congress of Nonlinear Analysts (WCNA-2008) in Orlando, Florida, in July 2008

Selected Publications

# C. Fulton, D. Pearson, and s. Pruess, Estimating Spectral Density Functions for Sturm-Liouville Problems with two singular endpoints, IMA Jour. of Numerical Analysis, published on-line Oct 17, 2013. Download link:

# C. Fulton, D. Pearson, and S. Pruess, Characterization of the Spectral Density Function for a one-sided tridiagonal Jacobi Matrix Operator, Discrete and Continuous Dynamical Systems, Supplement 2013, (2013) pp. 247-257  Download link:


 # C. Fulton, H. Langer, and A. Luger, Mark Krein's Directing Functionals and Singular Potentials, Math. Nachr. 285 (14-15) (2012), 1791-1798 (also available as arXiv 1110.6709v1).

# C. Fulton and H. Langer,Sturm-Liouville Operators with singularities and generalized Nevanlinna functions, Complex Anal. and Oper. Theory 4 (2010), 179-243.

# C. Fulton, D. Pearson and S. Pruess, Titchmarsh Weyl theory for tridiagonal Jacobi matrices and computation of their spectral functions, Chap 15 (pp. 167-174) in Advances in Mathematical Problems in Engineering Aerospace and Sciences,ed. S. Sivasundaram, Cambridge Scientific Publishers, Ltd, Dec 2009

# C. Fulton, Titchmarsh-Weyl m-functions for Second-order Sturm-Liouville Problems with two singular endpoints Math. Nachr. 281 (2008), 1418-1475.

# C. Fulton, D. Pearson, and S. Pruess, New characterizations of spectral density functions for singular Sturm-Liouville problems, J. Comput. Appl. Math 212 (2) (2008), pp. 194-213.

# C. Fulton, D. Pearson, and S. Pruess, Efficient calculation of spectral density functions for specific classes of singular Sturm Liouville problems, J. Comput. Appl. Math (2008) 212 (2), pp. 150-178.


# G.W. Howell, J. Demmel, C. Fulton, S. Hammarling, K. Marmol, ACM Trans. on Math. Softw. 32 (3) (2008), pp.~13-46-Liouville problems, J. Comput. Appl. Math 212 (2) (2008), pp. 150-178.

# C. Knoll, C. Fulton, Using a computer algebra system to simplify expressions for Titchmarsh-Weyl m-functions associated with the Hydrogen Atom on the half line, Florida Institute of Technology Research Report, 2007. (Available as arXiv 0812.4974)


Current research activity of Dr. Fulton is in the area of theory and computation of spectral density functions (and corresponding spectral functions) for Sturm-Liouville (Schroedinger) problems having absolutely continuous spectra;  also for Discrete Schroedinger problems  (that is, tridiagonal Jacobi matrices)  when  absolutely continuous spectrum is known to occur. Theoretical work, obtaining connection formulas for SL problems with two singular endpoints have been obtained in recent years, in papers published in  2008  (Math. Nachr),  2010 (Complex Anal and Oper Theory), and 2012 (Math. Nachr.); the most recent of these papers provides  sufficient conditions under which an endpoint of Weyl's  Limit Point type necessarily  allows  definition of a single  (principal) solution of the SL equation  for all values of the eigenparameter which is entire in the eigenvalue parameter; and  this solution is therefore possible to use in a version of the eigenfunction expansion involving  any classification at the other singular  (or regular) endpoint (thus ensuring simple spectrum). Further problems having LP endpoints satisfying these conditions are currently being investigated.  In Dr. Fulton's most recent paper (2013 in IMA Jour Numer Anal)  algorithms for computation of the spectral density functions for problems with two singular endpoints were given and the numerical computations were performed on several examples from recent papers  (2010 and 2008) to verify  high accuracy and (compared to the SLEDGE software package) high speed.  Some newer methods based on the  "Value Distribution" theory of Pearson  and Breimesser  are currently being pursued, and these methods give rise to many new mathematical  formulas;  and, moreover, will be applicable to all problems known to have, in some interval,  absolutely continuous spectrum  (e.g.  cases with a.c. spectrum filling a half line, and cases such as periodic and quasi-periodic potentials where band spectra occur).  These newer methods also have discrete analogs for  tridiagonal Jacobi matrix operators.


Edit Page